Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. 1987

C Debouck, and J G Gorniak, and J E Strickler, and T D Meek, and B W Metcalf, and M Rosenberg
Department of Molecular Genetics, Smith Kline and French Laboratories, King of Prussia, PA 19406.

The mature gag and pol proteins of human immunodeficiency virus (HIV) and all retroviruses derive from large gag and gag-pol polyprotein precursors by posttranslational cleavage. A highly specific, virally encoded protease is required for this essential proteolytic processing. In this study, the HIV protease gene product was expressed in Escherichia coli and shown to autocatalyze its maturation from a larger precursor. In addition, this bacterially produced HIV protease specifically processed an HIV p55 gag polyprotein precursor when coexpressed in E. coli. This system will allow detailed structure-function analysis of the HIV protease and provides a simple assay for the development of potential therapeutic agents directed against this critical viral enzyme.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012191 Retroviridae Proteins Proteins from the family Retroviridae. The most frequently encountered member of this family is the Rous sarcoma virus protein. Leukovirus Proteins,Retrovirus Proteins,Proteins, Leukovirus,Proteins, Retroviridae,Proteins, Retrovirus

Related Publications

C Debouck, and J G Gorniak, and J E Strickler, and T D Meek, and B W Metcalf, and M Rosenberg
March 1992, The Journal of general virology,
C Debouck, and J G Gorniak, and J E Strickler, and T D Meek, and B W Metcalf, and M Rosenberg
October 1988, The Journal of biological chemistry,
C Debouck, and J G Gorniak, and J E Strickler, and T D Meek, and B W Metcalf, and M Rosenberg
December 1992, Journal of virology,
C Debouck, and J G Gorniak, and J E Strickler, and T D Meek, and B W Metcalf, and M Rosenberg
May 1991, AIDS research and human retroviruses,
C Debouck, and J G Gorniak, and J E Strickler, and T D Meek, and B W Metcalf, and M Rosenberg
June 1995, Journal of virology,
C Debouck, and J G Gorniak, and J E Strickler, and T D Meek, and B W Metcalf, and M Rosenberg
July 1991, FEBS letters,
C Debouck, and J G Gorniak, and J E Strickler, and T D Meek, and B W Metcalf, and M Rosenberg
January 1995, Advances in experimental medicine and biology,
C Debouck, and J G Gorniak, and J E Strickler, and T D Meek, and B W Metcalf, and M Rosenberg
August 1994, Proceedings of the National Academy of Sciences of the United States of America,
C Debouck, and J G Gorniak, and J E Strickler, and T D Meek, and B W Metcalf, and M Rosenberg
May 2005, The Journal of biological chemistry,
C Debouck, and J G Gorniak, and J E Strickler, and T D Meek, and B W Metcalf, and M Rosenberg
August 2012, Retrovirology,
Copied contents to your clipboard!