Examination of Physiologically-Based Pharmacokinetic Models of Rosuvastatin. 2021

Christine M Bowman, and Fang Ma, and Jialin Mao, and Yuan Chen
Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA.

Physiologically-based pharmacokinetic (PBPK) modeling is increasingly used to predict drug disposition and drug-drug interactions (DDIs). However, accurately predicting the pharmacokinetics of transporter substrates and transporter-mediated DDIs (tDDIs) is still challenging. Rosuvastatin is a commonly used substrate probe in DDI risk assessment for new molecular entities (NMEs) that are potential organic anion transporting polypeptide 1B or breast cancer resistance protein transporter inhibitors, and as such, several rosuvastatin PBPK models have been developed to try to predict the clinical DDI and support NME drug labeling. In this review, we examine five representative PBPK rosuvastatin models, discuss common challenges that the models have come across, and note remaining gaps. These shared learnings will help with the continuing efforts of rosuvastatin model validation, provide more information to understand transporter-mediated drug disposition, and increase confidence in tDDI prediction.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000068718 Rosuvastatin Calcium A HYDROXYMETHYLGLUTARYL-COA-REDUCTASE INHIBITOR, or statin, that reduces the plasma concentrations of LDL-CHOLESTEROL; APOLIPOPROTEIN B, and TRIGLYCERIDES while increasing HDL-CHOLESTEROL levels in patients with HYPERCHOLESTEROLEMIA and those at risk for CARDIOVASCULAR DISEASES. Crestor,Rosuvastatin,ZD 4522,ZD4522,Calcium, Rosuvastatin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D019161 Hydroxymethylglutaryl-CoA Reductase Inhibitors Compounds that inhibit HYDROXYMETHYLGLUTARYL COA REDUCTASES. They have been shown to directly lower CHOLESTEROL synthesis. HMG-CoA Reductase Inhibitor,HMG-CoA Reductase Inhibitors,Hydroxymethylglutaryl-CoA Reductase Inhibitor,Statin,Statins, HMG-CoA,Inhibitors, HMG-CoA Reductase,Inhibitors, Hydroxymethylglutaryl-CoA,Inhibitors, Hydroxymethylglutaryl-Coenzyme A,Statins,HMG CoA Reductase Inhibitor,HMG CoA Reductase Inhibitors,HMG-CoA Statins,Hydroxymethylglutaryl CoA Reductase Inhibitor,Hydroxymethylglutaryl CoA Reductase Inhibitors,Hydroxymethylglutaryl-CoA Inhibitors,Hydroxymethylglutaryl-Coenzyme A Inhibitors,Inhibitors, HMG CoA Reductase,Inhibitors, Hydroxymethylglutaryl CoA,Inhibitors, Hydroxymethylglutaryl Coenzyme A,Inhibitors, Hydroxymethylglutaryl-CoA Reductase,Reductase Inhibitor, Hydroxymethylglutaryl-CoA,Reductase Inhibitors, HMG-CoA,Reductase Inhibitors, Hydroxymethylglutaryl-CoA,Statins, HMG CoA

Related Publications

Christine M Bowman, and Fang Ma, and Jialin Mao, and Yuan Chen
December 2021, Pharmaceutical research,
Christine M Bowman, and Fang Ma, and Jialin Mao, and Yuan Chen
April 2007, Expert opinion on drug metabolism & toxicology,
Christine M Bowman, and Fang Ma, and Jialin Mao, and Yuan Chen
August 2011, Expert opinion on drug metabolism & toxicology,
Christine M Bowman, and Fang Ma, and Jialin Mao, and Yuan Chen
December 2012, Journal of pharmacokinetics and pharmacodynamics,
Christine M Bowman, and Fang Ma, and Jialin Mao, and Yuan Chen
August 2006, Journal of pharmacokinetics and pharmacodynamics,
Christine M Bowman, and Fang Ma, and Jialin Mao, and Yuan Chen
August 1979, Journal of pharmaceutical sciences,
Christine M Bowman, and Fang Ma, and Jialin Mao, and Yuan Chen
January 1992, Drug metabolism reviews,
Christine M Bowman, and Fang Ma, and Jialin Mao, and Yuan Chen
November 2016, Paediatric anaesthesia,
Christine M Bowman, and Fang Ma, and Jialin Mao, and Yuan Chen
January 1979, Cancer chemotherapy and pharmacology,
Christine M Bowman, and Fang Ma, and Jialin Mao, and Yuan Chen
August 1994, Risk analysis : an official publication of the Society for Risk Analysis,
Copied contents to your clipboard!