Interorgan glutamine flow in metabolic acidosis. 1987

T C Welbourne
Department of Physiology and Biophysics, Louisiana State University Medical Center, Shreveport 71130.

Acid-base homeostasis depends on glutamine flow from producer organs to those capable of generating bicarbonate. Glutamine oxidation, the prerequisite metabolic transformation, can be expressed by many sites; however, net base generation requires that glutamine flow be directed to a specific organ, the kidney. Normally, glutamine flows from the periphery to the splanchnic bed, providing a major fuel and supporting ureagenesis. Glutamine flow in chronic metabolic acidosis, on the other hand, is rerouted to the kidneys; asymmetrical distribution of NH+4 and HCO3- into the urine and renal vein subserves restoration of alkaline reserves. Clearly, glutamine flows in accordance with physiological demands, yet little is known of the regulatory mechanisms. As a model, chronic metabolic acidosis alters two aspects of this vital flow, its direction and magnitude. Characteristically the direction of flow is away from the splanchnic bed and into the kidneys associated with a marked fall in arterial glutamine concentration, restoring arterial level returns flow to the splanchnic bed sink. Thus glutamine homeostasis is sacrificed to impart direction to interorgan glutamine flow. Although multiple sites contribute to glutamine homeostasis, of great strategic importance is the potent hepatic glutaminase flux activated by portal venous NH+4 fed forward by gut metabolism; local hydrogen ion concentration modulates the effectiveness of this activator. Acute regulation of flow direction can be exerted by the lungs in determining the prevailing pCO2 and cellular acidity; respiratory compensation in chronic acidosis allows the expression of hepatic glutaminase, thereby suppressing arterial glutamine concentration. The enormous magnitude of glutamine flowing from muscle to the kidneys is supported by adaptive increases in glutamine synthetase and mitochondrial glutaminase, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000136 Acid-Base Equilibrium The balance between acids and bases in the BODY FLUIDS. The pH (HYDROGEN-ION CONCENTRATION) of the arterial BLOOD provides an index for the total body acid-base balance. Anion Gap,Acid-Base Balance,Acid Base Balance,Acid Base Equilibrium,Anion Gaps,Balance, Acid-Base,Equilibrium, Acid-Base,Gap, Anion,Gaps, Anion
D000138 Acidosis A pathologic condition of acid accumulation or depletion of base in the body. The two main types are RESPIRATORY ACIDOSIS and metabolic acidosis, due to metabolic acid build up. Metabolic Acidosis,Acidoses,Acidoses, Metabolic,Acidosis, Metabolic,Metabolic Acidoses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013152 Splanchnic Circulation The circulation of blood through the BLOOD VESSELS supplying the abdominal VISCERA. Mesenteric Circulation,Circulation, Mesenteric,Circulation, Splanchnic,Circulations, Mesenteric,Circulations, Splanchnic,Mesenteric Circulations,Splanchnic Circulations

Related Publications

T C Welbourne
January 1990, JPEN. Journal of parenteral and enteral nutrition,
T C Welbourne
January 1982, Ciba Foundation symposium,
T C Welbourne
December 2003, Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract,
T C Welbourne
January 1994, Contributions to nephrology,
T C Welbourne
July 1974, The Journal of clinical investigation,
T C Welbourne
August 1968, The American journal of physiology,
T C Welbourne
June 1988, The Journal of surgical research,
T C Welbourne
February 1987, The Journal of surgical research,
Copied contents to your clipboard!