Kinetic mechanism of native Escherichia coli aspartate transcarbamylase. 1987

Y Hsuanyu, and F C Wedler
Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802.

Equilibrium isotope exchange kinetics have been used to reinvestigate the kinetic mechanism of Escherichia coli aspartate transcarbamylase (aspartate carbamoyl-transferase) at pH 7.0, 30 degrees C. Keq = 5.9 (+/- 0.6) X 10(3), allowing variation of substrate concentrations above and below their Km values in all experiments, a condition not possible at pH 7.8 [F. C. Wedler and F. J. Gasser (1974) Arch. Biochem. Biophys. 163, 57-68]. The rate of the [14C]Asp in equilibrium N-carbamoyl L-aspartate (C-Asp) exchange reaction was five times faster than that of [32P]carbamyl phosphate (C-P) in equilibrium Pi, which argues strongly against the rapid equilibrium random mechanism previously proposed by E. Heyde, A. Nagabhushanam, and J. F. Morrison [Biochemistry 12, 4718-4726 (1973]. Substrate concentrations were varied either as reactant-product pairs (holding the other pair constant) or together simultaneously in constant ratio at equilibrium. The resulting kinetic saturation patterns were most consistent with a preferred order random kinetic mechanism, with C-P binding prior to Asp and with C-Asp being released before Pi. Weak inhibition effects at high substrate levels could be accounted for by multiple weak dead-end complexes or ionic strength effects. Computer-based simulations have led to a set of rate constants that fit the experimental data, are in agreement with rate constants measured previously by pre-steady-state methods, and predict the correct initial velocities in the forward and reverse directions. Simulations also show that rate constants consistent with any of the various alternative mechanisms do not provide good fit to the experimental data. A model for the kinetic mechanism is considered, in which the binding of Asp prior to C-P may restrict access of C-P to the active site, but C-P binding prior to Asp potentiates the enzyme for the allosteric (T-R) transition, centered entirely upon the Asp binding process.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D001221 Aspartate Carbamoyltransferase An enzyme that catalyzes the conversion of carbamoyl phosphate and L-aspartate to yield orthophosphate and N-carbamoyl-L-aspartate. (From Enzyme Nomenclature, 1992) EC 2.1.3.2. Aspartate Transcarbamylase,Co(II)-Aspartate Transcarbamoylase,Ni(II)-Aspartate Transcarbamoylase,Carbamoyltransferase, Aspartate,Transcarbamylase, Aspartate
D012984 Software Sequential operating programs and data which instruct the functioning of a digital computer. Computer Programs,Computer Software,Open Source Software,Software Engineering,Software Tools,Computer Applications Software,Computer Programs and Programming,Computer Software Applications,Application, Computer Software,Applications Software, Computer,Applications Softwares, Computer,Applications, Computer Software,Computer Applications Softwares,Computer Program,Computer Software Application,Engineering, Software,Open Source Softwares,Program, Computer,Programs, Computer,Software Application, Computer,Software Applications, Computer,Software Tool,Software, Computer,Software, Computer Applications,Software, Open Source,Softwares, Computer Applications,Softwares, Open Source,Source Software, Open,Source Softwares, Open,Tool, Software,Tools, Software

Related Publications

Y Hsuanyu, and F C Wedler
March 1971, The Journal of biological chemistry,
Y Hsuanyu, and F C Wedler
January 1994, Advances in enzymology and related areas of molecular biology,
Y Hsuanyu, and F C Wedler
February 1973, Science (New York, N.Y.),
Y Hsuanyu, and F C Wedler
August 1988, Science (New York, N.Y.),
Y Hsuanyu, and F C Wedler
August 1968, Proceedings of the National Academy of Sciences of the United States of America,
Y Hsuanyu, and F C Wedler
February 1982, Journal of molecular biology,
Y Hsuanyu, and F C Wedler
December 1984, Archives of biochemistry and biophysics,
Copied contents to your clipboard!