Causal Prefrontal Contributions to Stop-Signal Task Performance in Humans. 2021

Michael K Yeung, and Ami Tsuchida, and Lesley K Fellows
McGill University, Montreal, Quebec, Canada.

The frontal lobes have long been implicated in inhibitory control, but a full understanding of the underlying mechanisms remains elusive. The stop-signal task has been widely used to probe instructed response inhibition in cognitive neuroscience. The processes involved have been modeled and related to putative brain substrates. However, there has been surprisingly little human lesion research using this task, with the few existing studies implicating different prefrontal regions. Here, we tested the effects of focal prefrontal damage on stop-signal task performance in a large sample of people with chronic focal damage affecting the frontal lobes (n = 42) and demographically matched healthy individuals (n = 60). Patients with damage to the left lateral, right lateral, dorsomedial, or ventromedial frontal lobe had slower stop-signal RT compared to healthy controls. There were systematic differences in the patterns of impairment across frontal subgroups: Those with damage to the left or right lateral and dorsomedial frontal lobes, but not those with ventromedial frontal damage, were slower than controls to "go" as well as to stop. These findings suggest that multiple prefrontal regions make necessary but distinct contributions to stop-signal task performance. As a consequence, stop-signal RT slowing is not strongly localizing within the frontal lobes.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013647 Task Performance and Analysis The detailed examination of observable activity or behavior associated with the execution or completion of a required function or unit of work. Critical Incident Technique,Critical Incident Technic,Task Performance,Task Performance, Analysis,Critical Incident Technics,Critical Incident Techniques,Incident Technic, Critical,Incident Technics, Critical,Incident Technique, Critical,Incident Techniques, Critical,Performance, Analysis Task,Performance, Task,Performances, Analysis Task,Performances, Task,Task Performances,Task Performances, Analysis,Technic, Critical Incident,Technics, Critical Incident,Technique, Critical Incident,Techniques, Critical Incident
D017397 Prefrontal Cortex The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin. Anterior Prefrontal Cortex,Brodmann Area 10,Brodmann Area 11,Brodmann Area 12,Brodmann Area 47,Brodmann's Area 10,Brodmann's Area 11,Brodmann's Area 12,Brodmann's Area 47,Pars Orbitalis,Frontal Sulcus,Gyrus Frontalis Inferior,Gyrus Frontalis Superior,Gyrus Orbitalis,Gyrus Rectus,Inferior Frontal Gyrus,Lateral Orbitofrontal Cortex,Marginal Gyrus,Medial Frontal Gyrus,Olfactory Sulci,Orbital Area,Orbital Cortex,Orbital Gyri,Orbitofrontal Cortex,Orbitofrontal Gyri,Orbitofrontal Gyrus,Orbitofrontal Region,Rectal Gyrus,Rectus Gyrus,Straight Gyrus,Subcallosal Area,Superior Frontal Convolution,Superior Frontal Gyrus,Ventral Medial Prefrontal Cortex,Ventromedial Prefrontal Cortex,Anterior Prefrontal Cortices,Area 10, Brodmann,Area 10, Brodmann's,Area 11, Brodmann,Area 11, Brodmann's,Area 12, Brodmann,Area 12, Brodmann's,Area 47, Brodmann,Area 47, Brodmann's,Area, Orbital,Area, Subcallosal,Brodmanns Area 10,Brodmanns Area 11,Brodmanns Area 12,Brodmanns Area 47,Convolution, Superior Frontal,Convolutions, Superior Frontal,Cortex, Anterior Prefrontal,Cortex, Lateral Orbitofrontal,Cortex, Orbital,Cortex, Orbitofrontal,Cortex, Prefrontal,Cortex, Ventromedial Prefrontal,Cortices, Ventromedial Prefrontal,Frontal Convolution, Superior,Frontal Gyrus, Inferior,Frontal Gyrus, Medial,Frontal Gyrus, Superior,Frontalis Superior, Gyrus,Gyrus, Inferior Frontal,Gyrus, Marginal,Gyrus, Medial Frontal,Gyrus, Orbital,Gyrus, Orbitofrontal,Gyrus, Rectal,Gyrus, Rectus,Gyrus, Straight,Gyrus, Superior Frontal,Inferior, Gyrus Frontalis,Lateral Orbitofrontal Cortices,Olfactory Sulcus,Orbital Areas,Orbital Cortices,Orbital Gyrus,Orbitalis, Pars,Orbitofrontal Cortex, Lateral,Orbitofrontal Cortices,Orbitofrontal Cortices, Lateral,Orbitofrontal Regions,Prefrontal Cortex, Anterior,Prefrontal Cortex, Ventromedial,Prefrontal Cortices, Anterior,Region, Orbitofrontal,Subcallosal Areas,Sulcus, Frontal,Superior Frontal Convolutions,Superior, Gyrus Frontalis,Ventromedial Prefrontal Cortices

Related Publications

Michael K Yeung, and Ami Tsuchida, and Lesley K Fellows
June 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Michael K Yeung, and Ami Tsuchida, and Lesley K Fellows
January 2008, Cerebral cortex (New York, N.Y. : 1991),
Michael K Yeung, and Ami Tsuchida, and Lesley K Fellows
March 2021, Experimental brain research,
Michael K Yeung, and Ami Tsuchida, and Lesley K Fellows
April 2014, The European journal of neuroscience,
Michael K Yeung, and Ami Tsuchida, and Lesley K Fellows
August 2023, Attention, perception & psychophysics,
Michael K Yeung, and Ami Tsuchida, and Lesley K Fellows
November 2012, Behavioural brain research,
Michael K Yeung, and Ami Tsuchida, and Lesley K Fellows
January 2010, Experimental psychology,
Michael K Yeung, and Ami Tsuchida, and Lesley K Fellows
November 2010, NeuroImage,
Michael K Yeung, and Ami Tsuchida, and Lesley K Fellows
March 2012, NeuroImage,
Michael K Yeung, and Ami Tsuchida, and Lesley K Fellows
March 2001, The International journal of neuroscience,
Copied contents to your clipboard!