Nanoscale Mass Spectrometry Multimodal Imaging via Tip-Enhanced Photothermal Desorption. 2020

Matthias Lorenz, and Ryan Wagner, and Stephen Jesse, and Jennifer M Marsh, and Marc Mamak, and Roger Proksch, and Olga S Ovchinnikova
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Materials ranging from adhesives, pharmaceuticals, lubricants, and personal care products are traditionally studied using macroscopic characterization techniques. However, their functionality is in reality defined by details of chemical organization on often noncrystalline matter with characteristic length scales on the order of microns to nanometers. Additionally, these materials are traditionally difficult to analyze using standard vacuum-based approaches that provide nanoscale chemical characterization due to their volatile and beam-sensitive nature. Therefore, approaches that operate under ambient conditions need to be developed that allow probing of nanoscale chemical phenomena and correlated functionality. Here, we demonstrate a tool for probing and visualizing local chemical environments and correlating them to material structure and functionality using advanced multimodal chemical imaging on a combined atomic force microscopy (AFM) and mass spectrometry (MS) system using tip-enhanced photothermal desorption with atmospheric pressure chemical ionization (APCI). We demonstrate enhanced performance metrics of the technique for correlated imaging and point sampling and illustrate the applicability for the analysis of trace chemicals on a human hair, additives in adhesives on paper, and pharmaceuticals samples notoriously difficult to analyze in a vacuum environment. Overall, this approach of correlating local chemical environments to structure and functionality is key to advancing research in many fields ranging from biology, to medicine, to material science.

UI MeSH Term Description Entries

Related Publications

Matthias Lorenz, and Ryan Wagner, and Stephen Jesse, and Jennifer M Marsh, and Marc Mamak, and Roger Proksch, and Olga S Ovchinnikova
December 2017, Science advances,
Matthias Lorenz, and Ryan Wagner, and Stephen Jesse, and Jennifer M Marsh, and Marc Mamak, and Roger Proksch, and Olga S Ovchinnikova
July 2020, Analytical chemistry,
Matthias Lorenz, and Ryan Wagner, and Stephen Jesse, and Jennifer M Marsh, and Marc Mamak, and Roger Proksch, and Olga S Ovchinnikova
December 2021, Journal of the American Chemical Society,
Matthias Lorenz, and Ryan Wagner, and Stephen Jesse, and Jennifer M Marsh, and Marc Mamak, and Roger Proksch, and Olga S Ovchinnikova
April 2019, Nature protocols,
Matthias Lorenz, and Ryan Wagner, and Stephen Jesse, and Jennifer M Marsh, and Marc Mamak, and Roger Proksch, and Olga S Ovchinnikova
December 2008, The Review of scientific instruments,
Matthias Lorenz, and Ryan Wagner, and Stephen Jesse, and Jennifer M Marsh, and Marc Mamak, and Roger Proksch, and Olga S Ovchinnikova
February 2019, Journal of the American Society for Mass Spectrometry,
Matthias Lorenz, and Ryan Wagner, and Stephen Jesse, and Jennifer M Marsh, and Marc Mamak, and Roger Proksch, and Olga S Ovchinnikova
January 2016, Analytical chemistry,
Matthias Lorenz, and Ryan Wagner, and Stephen Jesse, and Jennifer M Marsh, and Marc Mamak, and Roger Proksch, and Olga S Ovchinnikova
April 2014, Analytical chemistry,
Matthias Lorenz, and Ryan Wagner, and Stephen Jesse, and Jennifer M Marsh, and Marc Mamak, and Roger Proksch, and Olga S Ovchinnikova
January 2006, Analytical chemistry,
Matthias Lorenz, and Ryan Wagner, and Stephen Jesse, and Jennifer M Marsh, and Marc Mamak, and Roger Proksch, and Olga S Ovchinnikova
September 2015, The Analyst,
Copied contents to your clipboard!