Positron emission tomography. Diagnostic and therapeutic implications in human myocardial ischemia. 1987

H R Schelbert
Department of Radiological Sciences, UCLA School of Medicine 90024.

Positron emission tomography and tracers of blood flow and of metabolism offer a most unique capability: The noninvasive study of regional myocardial metabolism and its derangements as a result of regional or global myocardial disease. Research with PET not only has confirmed the existence of metabolic fluxes and reactions as established previously through highly invasive or even destructive investigational techniques but has provided new insights into pathophysiologic processes, especially in ischemic and post-ischemic myocardium. From these investigations in both animal experiments and in humans, observations have emerged which indicate a place for PET in clinical cardiology. PET is likely to contribute to detection of disease, to characterizing its extent and severity as well as to decide upon the most appropriate therapeutic strategy and assessing its results. It is recognized that many of these observations with clinical implications await confirmation through larger clinical trials, follow-up studies as well as independent confirmation. Besides exploring ischemic heart disease, PET is equally suitable for examining substrate fluxes and interactions in other disorders as for example in intrinsic myocardial disease like primary and secondary cardiomyopathies. While derangements of metabolism in these disorders may be an expression of the consequences of the disease process or its underlying mechanisms itself, findings on PET will allow formulation of new hypotheses on disease mechanisms that conversely can then be tested. In addition to F-18 2-deoxyglucose and C-11 palmitate, the number of tracers for substrate metabolism is likely to increase. An example is C-11 acetate currently intensely investigated as a tool for measuring overall myocardial oxidative metabolism. Others as for example C-11 labeled short chain fatty acids are on the horizon. The study of cardiac receptors is similarly possible. Thus, a set of tools will soon be available for dissection of entire metabolic pathways and for determination of rate limiting steps in health and disease and to more clearly define specific defects in biochemical reaction steps that critically contribute to or even ae the specific cause of disease.

UI MeSH Term Description Entries
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014055 Tomography, Emission-Computed Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image. CAT Scan, Radionuclide,CT Scan, Radionuclide,Computerized Emission Tomography,Radionuclide Tomography, Computed,Scintigraphy, Computed Tomographic,Tomography, Radionuclide-Computed,Computed Tomographic Scintigraphy,Emission-Computed Tomography,Radionuclide Computer-Assisted Tomography,Radionuclide Computerized Tomography,Radionuclide-Computed Tomography,Radionuclide-Emission Computed Tomography,Tomography, Computerized Emission,CAT Scans, Radionuclide,CT Scans, Radionuclide,Computed Radionuclide Tomography,Computed Tomography, Radionuclide-Emission,Computer-Assisted Tomographies, Radionuclide,Computer-Assisted Tomography, Radionuclide,Computerized Tomography, Radionuclide,Emission Computed Tomography,Emission Tomography, Computerized,Radionuclide CAT Scan,Radionuclide CAT Scans,Radionuclide CT Scan,Radionuclide CT Scans,Radionuclide Computed Tomography,Radionuclide Computer Assisted Tomography,Radionuclide Computer-Assisted Tomographies,Radionuclide Emission Computed Tomography,Scan, Radionuclide CAT,Scan, Radionuclide CT,Scans, Radionuclide CAT,Scans, Radionuclide CT,Tomographic Scintigraphy, Computed,Tomographies, Radionuclide Computer-Assisted,Tomography, Computed Radionuclide,Tomography, Emission Computed,Tomography, Radionuclide Computed,Tomography, Radionuclide Computer-Assisted,Tomography, Radionuclide Computerized,Tomography, Radionuclide-Emission Computed

Related Publications

H R Schelbert
April 2000, Heart (British Cardiac Society),
H R Schelbert
April 2007, Nihon rinsho. Japanese journal of clinical medicine,
H R Schelbert
January 2017, Indian journal of nuclear medicine : IJNM : the official journal of the Society of Nuclear Medicine, India,
H R Schelbert
January 2007, PET clinics,
H R Schelbert
May 2005, Neuroimaging clinics of North America,
Copied contents to your clipboard!