Effects of recombinant plasmid size on cellular processes in Escherichia coli. 1987

U E Cheah, and W A Weigand, and B C Stark
Department of Biology, Illinois Institute of Technology, Chicago 60616.

The effects of recombinant plasmid size on cell growth and viability, plasmid copy number, and synthesis of plasmid-encoded protein were investigated in Escherichia coli using plasmid pUC8 and four recombinant derivatives containing inserts of Drosophila melanogaster DNA of 1.7-6.0 kb. Growth in log phase was unaffected by plasmid size, but as plasmid size increased, maximum cell density decreased and, with the largest plasmid, cell death was accelerated after the stationary phase was reached. There was also a correlation between increasing plasmid size and decreased viability at high ampicillin concentrations, resistance to which is conferred by the plasmids. These effects were shown not to be due to transcription or translation of Drosophila sequences carried on the recombinant plasmids. Cells harboring the largest plasmid, pBS5 (8.7 kb), fared poorly in competition with plasmid-free cells in mixed cultures, compared with cells harboring pUC8 (2.7 kb). In addition, pBS5 was harbored at significantly fewer copies per cell than pUC8 at all phases of growth and supported much less production of the plasmid-encoded protein, beta-lactamase, than did pUC8. The results suggest that recombinant plasmid size may be an important parameter in the optimization of large-scale production of plasmid-encoded proteins.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001618 beta-Lactamases Enzymes found in many bacteria which catalyze the hydrolysis of the amide bond in the beta-lactam ring. Well known antibiotics destroyed by these enzymes are penicillins and cephalosporins. beta-Lactamase,beta Lactamase,beta Lactamases

Related Publications

U E Cheah, and W A Weigand, and B C Stark
August 2003, Biotechnology and applied biochemistry,
U E Cheah, and W A Weigand, and B C Stark
March 1990, Plasmid,
U E Cheah, and W A Weigand, and B C Stark
January 2000, Critical reviews in biotechnology,
U E Cheah, and W A Weigand, and B C Stark
March 2011, BMC biotechnology,
U E Cheah, and W A Weigand, and B C Stark
January 1987, Biotechnology and bioengineering,
U E Cheah, and W A Weigand, and B C Stark
December 1985, Biotechnology and bioengineering,
U E Cheah, and W A Weigand, and B C Stark
January 1993, Biotechnology progress,
U E Cheah, and W A Weigand, and B C Stark
March 1981, Plasmid,
U E Cheah, and W A Weigand, and B C Stark
March 1990, Agricultural and biological chemistry,
Copied contents to your clipboard!