Effects of PGC1α on myocardial ischemia reperfusion injury and the underlying mechanisms. 2020

Jungang Nie, and Na Ta, and Lijuan Liu, and Guoxiang Shi, and Ting Kang, and Zeqi Zheng
Department of Cardiovascular Medicine, First Affiliated Hospital of Nanchang University, Nanchang 330006. ncyfynjg@126.com.

OBJECTIVE Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) controls mitochondrial biogenesis, but its role in cardiovascular diseases is unclear. The purpose of this study is to explore the effect of PGC1α on myocardial ischemia-reperfusion injury and the underlying mechanisms. METHODS The transverse coronary artery of SD rat was ligated for 30 minutes followed by 2 hours of reperfusion. Triphenyltetrazolium chloride (TTC) staining was performed to measure the area of myocardial infarction. Immunohistochemistry and Western blotting were used to detect the PGC1α expression in myocardium. The rat cardiomyocyte H9C2 was subjected to hypoxia/reoxygenation (H/R) with the knockdown of PGC1α or hypoxia- inducible factor 1α (HIF-1α), or with treatment of metformin. Western blotting was used to detect the expression of PGC1α, HIF-1α, p21, BAX, and caspase-3. CCK-8 was performed to detect cell viability, and flow cytometry was used to detect apoptosis and mitochondrial superoxide (mitoSOX) release. RT-qPCR was used to detect the mRNA expression of PGC1α and HIF-1α. Besides, chromatin immunoprecipitation (ChIP)-qPCR and luciferase reporter gene assay were applied to detect the transcriptional regulation effect of HIF-1α on PGC1α. RESULTS After I/R, the PGC1α expression was increased in infarcted myocardium. H/R induced H9C2 cell apoptosis (P<0.001). The release of mitoSOX (P<0.001) and protein expression of PGC1α, and apoptosis-related p21, BAX, and caspase-3 were increased. However, knockdown of PGC1α reduced apoptosis (P<0.01) and mitoSOX release (P<0.001), and decreased protein expression of apoptosis-related gene. HIF-1α is bound to the promoter region of PGC1α. Knockdown of HIF-1α inhibited the transcription and protein expression of PGC1α and further to reduce the apoptosis (all P<0.001) and mitoSOX release (P<0.01). While overexpression of PGC1α reversed the effects caused by HIF-1α knockdown (all P<0.001). Metformin effectively reduced H/R-induced apoptosis (P=0.013), mitoSOX release (P<0.001), HIF-1α, PGC1α and apoptosis-related protein expression, recovered the cell viability (P<0.001), and reduced myocardial infarction (P=0.003). CONCLUSIONS After I/R, HIF-1α up-regulates the expression of PGC1α, leading to an increase in ROS production and aggravation of injury. Metformin can inhibit the accumulation of HIF-1α during hypoxia and effectively protect myocardium from ischemia/reperfusion injury.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D008687 Metformin A biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. (From Martindale, The Extra Pharmacopoeia, 30th ed, p289) Dimethylguanylguanidine,Dimethylbiguanidine,Glucophage,Metformin HCl,Metformin Hydrochloride,HCl, Metformin,Hydrochloride, Metformin
D000071248 Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha A transcriptional co-activator for NUCLEAR RECEPTORS. It is characterized by an N-terminal LxxLL sequence, a region that interacts with PPAR GAMMA, and a C-terminal RNA RECOGNITION MOTIF. It increases expression of MITOCHONDRIAL UNCOUPLING PROTEIN to regulate genes involved in metabolic reprogramming in response to dietary restriction and the integration of CIRCADIAN RHYTHMS with ENERGY METABOLISM. PGC-1-alpha Protein,PPARGC-1-alpha Protein,PPARGC1a Protein,PGC 1 alpha Protein,PPARGC 1 alpha Protein,Peroxisome Proliferator Activated Receptor Gamma Coactivator 1 alpha
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015427 Reperfusion Injury Adverse functional, metabolic, or structural changes in tissues that result from the restoration of blood flow to the tissue (REPERFUSION) following ISCHEMIA. Ischemia-Reperfusion Injury,Injury, Ischemia-Reperfusion,Injury, Reperfusion,Reperfusion Damage,Damage, Reperfusion,Injury, Ischemia Reperfusion,Ischemia Reperfusion Injury,Ischemia-Reperfusion Injuries,Reperfusion Damages,Reperfusion Injuries
D015428 Myocardial Reperfusion Injury Damage to the MYOCARDIUM resulting from MYOCARDIAL REPERFUSION (restoration of blood flow to ischemic areas of the HEART.) Reperfusion takes place when there is spontaneous thrombolysis, THROMBOLYTIC THERAPY, collateral flow from other coronary vascular beds, or reversal of vasospasm. Reperfusion Injury, Myocardial,Injury, Myocardial Reperfusion,Myocardial Ischemic Reperfusion Injury,Injuries, Myocardial Reperfusion,Myocardial Reperfusion Injuries,Reperfusion Injuries, Myocardial
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D051795 Hypoxia-Inducible Factor 1, alpha Subunit Hypoxia-inducible factor 1, alpha subunit is a basic helix-loop-helix transcription factor that is regulated by OXYGEN availability and is targeted for degradation by VHL TUMOR SUPPRESSOR PROTEIN. Hypoxia Inducible Factor 1, alpha Subunit

Related Publications

Jungang Nie, and Na Ta, and Lijuan Liu, and Guoxiang Shi, and Ting Kang, and Zeqi Zheng
October 2023, Antioxidants (Basel, Switzerland),
Jungang Nie, and Na Ta, and Lijuan Liu, and Guoxiang Shi, and Ting Kang, and Zeqi Zheng
June 2022, European review for medical and pharmacological sciences,
Jungang Nie, and Na Ta, and Lijuan Liu, and Guoxiang Shi, and Ting Kang, and Zeqi Zheng
September 2023, Perfusion,
Jungang Nie, and Na Ta, and Lijuan Liu, and Guoxiang Shi, and Ting Kang, and Zeqi Zheng
February 2015, American journal of physiology. Heart and circulatory physiology,
Jungang Nie, and Na Ta, and Lijuan Liu, and Guoxiang Shi, and Ting Kang, and Zeqi Zheng
January 2021, Chinese herbal medicines,
Jungang Nie, and Na Ta, and Lijuan Liu, and Guoxiang Shi, and Ting Kang, and Zeqi Zheng
January 2024, Cardiovascular drugs and therapy,
Jungang Nie, and Na Ta, and Lijuan Liu, and Guoxiang Shi, and Ting Kang, and Zeqi Zheng
August 2007, Scandinavian cardiovascular journal : SCJ,
Jungang Nie, and Na Ta, and Lijuan Liu, and Guoxiang Shi, and Ting Kang, and Zeqi Zheng
September 2023, Microvascular research,
Jungang Nie, and Na Ta, and Lijuan Liu, and Guoxiang Shi, and Ting Kang, and Zeqi Zheng
November 2022, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
Jungang Nie, and Na Ta, and Lijuan Liu, and Guoxiang Shi, and Ting Kang, and Zeqi Zheng
April 2008, Physiological reviews,
Copied contents to your clipboard!