Excitation of rat hippocampal neurones by the stereoisomers of cis- and trans-1-amino-1,3-cyclopentane dicarboxylate. 1987

K Curry, and D S Magnuson, and H McLennan, and M J Peet
Department of Physiology, Faculty of Medicine, University of British Columbia, Vancouver, Canada.

Intracellular recordings were obtained from rat hippocampal neurons during the microiontophoretic ejection of the stereoisomers of cis- and trans-1-amino-1,3-cyclopentane dicarboxylate into the dendritic region (stratum radiatum) of the impaled cells. L-(+)-cis-1-Amino-1,3-cyclopentane dicarboxylate, D(+)-trans-1-amino-1,3-cyclopentane dicarboxylate, and L-(-)-trans-1-amino-1,3-cyclopentane dicarboxylate all evoked patterns of excitation resembling that elicited by kainate. All of these responses were unaffected by D-(-)-2-amino-5-phosphonovalerate but were antagonized at comparable currents by kynurenate. The excitation produced by D-(-)-cis-1-amino-1,3-cyclopentane dicarboxylate was similar to that evoked by N-methyl-D-aspartate. At low ejection currents a slow depolarization triggered rhythmic burst firing, each burst consisting of a depolarizing shift in membrane potential upon which were superimposed four to five action potentials. These responses were antagonized both by D-(-)-2-amino-5-phosphonovalerate and by kynurenate. The results are discussed with respect to the conformational requirements considered to be necessary for interaction at the kainate and N-methyl-D-aspartate receptors on CA1 pyramidal neurones. It is important to note that the isopropylene side chain of kainate is absent from the 1-amino-1-3-cyclopentane dicarboxylate molecule.

UI MeSH Term Description Entries
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D007736 Kynurenic Acid A broad-spectrum excitatory amino acid antagonist used as a research tool. Kynurenate,Acid, Kynurenic
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010069 Oxadiazoles Compounds containing five-membered heteroaromatic rings containing two carbons, two nitrogens, and one oxygen atom which exist in various regioisomeric forms. Oxadiazole
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D003292 Convulsants Substances that act in the brain stem or spinal cord to produce tonic or clonic convulsions, often by removing normal inhibitory tone. They were formerly used to stimulate respiration or as antidotes to barbiturate overdose. They are now most commonly used as experimental tools. Convulsant,Convulsant Effect,Convulsant Effects,Effect, Convulsant,Effects, Convulsant
D003515 Cycloleucine An amino acid formed by cyclization of leucine. It has cytostatic, immunosuppressive and antineoplastic activities. 1-Aminocyclopentanecarboxylic Acid,Aminocyclopentanecarboxylic Acid,NSC 1026,1 Aminocyclopentanecarboxylic Acid,Acid, 1-Aminocyclopentanecarboxylic,Acid, Aminocyclopentanecarboxylic
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

K Curry, and D S Magnuson, and H McLennan, and M J Peet
March 1981, Journal of neurochemistry,
K Curry, and D S Magnuson, and H McLennan, and M J Peet
October 1972, Biochemistry,
K Curry, and D S Magnuson, and H McLennan, and M J Peet
September 1978, The Journal of physiology,
K Curry, and D S Magnuson, and H McLennan, and M J Peet
February 2004, Organic & biomolecular chemistry,
K Curry, and D S Magnuson, and H McLennan, and M J Peet
May 1994, Research communications in chemical pathology and pharmacology,
Copied contents to your clipboard!