Immune Checkpoint Targeted Therapy in Glioma: Status and Hopes. 2020

Yangzhi Qi, and Baohui Liu, and Qian Sun, and Xiaoxing Xiong, and Qianxue Chen
Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.

Glioma is the most malignant primary tumor of the central nervous system and is characterized by an extremely low overall survival. Recent breakthroughs in cancer therapy using immune checkpoint blockade have attracted significant attention. However, despite representing the most promising (immunotherapy) treatment for cancer, the clinical application of immune checkpoint blockade in glioma patients remains challenging due to the "cold phenotype" of glioma and multiple factors inducing resistance, both intrinsic and acquired. Therefore, comprehensive understanding of the tumor microenvironment and the unique immunological status of the brain will be critical for the application of glioma immunotherapy. More sensitive biomarkers to monitor the immune response, as well as combining multiple immunotherapy strategies, may accelerate clinical progress and enable development of effective and safe treatments for glioma patients.

UI MeSH Term Description Entries
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000082082 Immune Checkpoint Inhibitors Drugs that block negative regulator IMMUNE CHECKPOINT proteins (e.g., PD-1 RECEPTOR and CTLA-4 ANTIGEN) thereby increasing suppressed immune activation in immunotherapies. CTLA-4 Inhibitor,CTLA-4 Inhibitors,Cytotoxic T-Lymphocyte-Associated Protein 4 Inhibitor,Cytotoxic T-Lymphocyte-Associated Protein 4 Inhibitors,Immune Checkpoint Blockade,Immune Checkpoint Blockers,Immune Checkpoint Inhibition,Immune Checkpoint Inhibitor,PD-1 Inhibitor,PD-1 Inhibitors,PD-1-PD-L1 Blockade,PD-L1 Inhibitor,PD-L1 Inhibitors,Programmed Cell Death Protein 1 Inhibitor,Programmed Cell Death Protein 1 Inhibitors,Programmed Death-Ligand 1 Inhibitors,Blockade, PD-1-PD-L1,CTLA 4 Inhibitor,CTLA 4 Inhibitors,Checkpoint Blockade, Immune,Checkpoint Blockers, Immune,Checkpoint Inhibition, Immune,Checkpoint Inhibitor, Immune,Checkpoint Inhibitors, Immune,Cytotoxic T Lymphocyte Associated Protein 4 Inhibitor,Cytotoxic T Lymphocyte Associated Protein 4 Inhibitors,Inhibitor, PD-1,PD 1 Inhibitor,PD 1 Inhibitors,PD 1 PD L1 Blockade,PD L1 Inhibitor,PD L1 Inhibitors,Programmed Death Ligand 1 Inhibitors
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016896 Treatment Outcome Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series. Rehabilitation Outcome,Treatment Effectiveness,Clinical Effectiveness,Clinical Efficacy,Patient-Relevant Outcome,Treatment Efficacy,Effectiveness, Clinical,Effectiveness, Treatment,Efficacy, Clinical,Efficacy, Treatment,Outcome, Patient-Relevant,Outcome, Rehabilitation,Outcome, Treatment,Outcomes, Patient-Relevant,Patient Relevant Outcome,Patient-Relevant Outcomes
D058990 Molecular Targeted Therapy Treatments with drugs which interact with or block synthesis of specific cellular components characteristic of the individual's disease in order to stop or interrupt the specific biochemical dysfunction involved in progression of the disease. Targeted Molecular Therapy,Molecular Targeted Therapies,Molecular Therapy, Targeted,Targeted Molecular Therapies,Targeted Therapy, Molecular,Therapy, Molecular Targeted,Therapy, Targeted Molecular
D059016 Tumor Microenvironment The milieu surrounding neoplasms consisting of cells, vessels, soluble factors, and molecules, that can influence and be influenced by, the neoplasm's growth. Cancer Microenvironment,Cancer Microenvironments,Microenvironment, Cancer,Microenvironment, Tumor,Microenvironments, Cancer,Microenvironments, Tumor,Tumor Microenvironments

Related Publications

Yangzhi Qi, and Baohui Liu, and Qian Sun, and Xiaoxing Xiong, and Qianxue Chen
February 2020, Journal for immunotherapy of cancer,
Yangzhi Qi, and Baohui Liu, and Qian Sun, and Xiaoxing Xiong, and Qianxue Chen
April 2020, Journal for immunotherapy of cancer,
Yangzhi Qi, and Baohui Liu, and Qian Sun, and Xiaoxing Xiong, and Qianxue Chen
January 2016, Cancer journal (Sudbury, Mass.),
Yangzhi Qi, and Baohui Liu, and Qian Sun, and Xiaoxing Xiong, and Qianxue Chen
July 2021, Cancers,
Yangzhi Qi, and Baohui Liu, and Qian Sun, and Xiaoxing Xiong, and Qianxue Chen
November 2019, Journal of experimental & clinical cancer research : CR,
Yangzhi Qi, and Baohui Liu, and Qian Sun, and Xiaoxing Xiong, and Qianxue Chen
November 2011, Expert review of clinical pharmacology,
Yangzhi Qi, and Baohui Liu, and Qian Sun, and Xiaoxing Xiong, and Qianxue Chen
January 2021, Frontiers in immunology,
Yangzhi Qi, and Baohui Liu, and Qian Sun, and Xiaoxing Xiong, and Qianxue Chen
April 2023, Pharmaceutics,
Yangzhi Qi, and Baohui Liu, and Qian Sun, and Xiaoxing Xiong, and Qianxue Chen
September 2022, Clinical cancer research : an official journal of the American Association for Cancer Research,
Yangzhi Qi, and Baohui Liu, and Qian Sun, and Xiaoxing Xiong, and Qianxue Chen
April 2016, Current opinion in immunology,
Copied contents to your clipboard!