Yeast/E. coli shuttle vectors with multiple unique restriction sites. 1986

J E Hill, and A M Myers, and T J Koerner, and A Tzagoloff
Department of Biological Sciences, Columbia University, New York, NY 10027.

Two yeast/E. coli shuttle vectors have been constructed. The two vectors, YEp351 and YEp352, have the following properties: (1) they can replicate autonomously in Saccharomyces cerevisiae and in E. coli; (2) they contain the beta-lactamase gene and confer ampicillin resistance to E. coli; (3) they contain the entire sequence of pUC18; (4) all ten restriction sites of the multiple cloning region of pUC18 including EcoRI, SacI, KpnI, SmaI, BamHI, XbaI, SalI, PstI, SphI and HindIII are unique in YEp352; these sites are also unique in YEp351 except for EcoRI and KpnI, which occur twice; (5) recombinant plasmids with DNA inserts in the multiple cloning region of YEp351 and YEp352 can be recognised by loss of beta-galactosidase function in appropriate E. coli hosts; (6) YEp351 and YEp352 contain the yeast LEU2 and URA3 genes, respectively, allowing for selection of these auxotrophic markers in yeast and E. coli; (7) both plasmids are retained with high frequency in yeast grown under non-selective conditions indicative of high plasmid copy number. The above properties make the shuttle vectors suitable for construction of yeast genomic libraries and for cloning of DNA fragments defined by a large number of different restriction sites. The two vectors have been further modified by deletion of the sequences necessary for autonomous replication in yeast. The derivative plasmids YIp351 and YIp352 can therefore be used to integrate specific sequences into yeast chromosomal DNA.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014170 Transformation, Genetic Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome. Genetic Transformation,Genetic Transformations,Transformations, Genetic
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction

Related Publications

J E Hill, and A M Myers, and T J Koerner, and A Tzagoloff
January 1985, Gene,
J E Hill, and A M Myers, and T J Koerner, and A Tzagoloff
January 1986, Gene,
J E Hill, and A M Myers, and T J Koerner, and A Tzagoloff
November 1996, FEMS microbiology letters,
J E Hill, and A M Myers, and T J Koerner, and A Tzagoloff
July 2018, Extremophiles : life under extreme conditions,
J E Hill, and A M Myers, and T J Koerner, and A Tzagoloff
January 1991, Methods in enzymology,
J E Hill, and A M Myers, and T J Koerner, and A Tzagoloff
August 1993, Gene,
J E Hill, and A M Myers, and T J Koerner, and A Tzagoloff
September 1990, Nucleic acids research,
J E Hill, and A M Myers, and T J Koerner, and A Tzagoloff
March 2021, ACS omega,
Copied contents to your clipboard!