Physical separation and functional interaction of Kluyveromyces lactis and Saccharomyces cerevisiae ARS elements derived from killer plasmid DNA. 1986

A Thompson, and S G Oliver
Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology, U.K.

Two DNA fragments which have autonomously replicating sequence (ARS) activity in both Saccharomyces cerevisiae and Kluyveromyces lactis have been isolated from the K. lactis kl killer plasmid. One fragment (Kla1) is 700 base pairs (bp) in length and plasmids carrying it are mitotically unstable in both hosts. In K. lactis, this instability leads to colonies having a 'nibbled' phenotype when grown on selective media and appears to be the result of inefficient plasmid segregation. The other fragment (Kla2) is an artificial junction fragment of 1100 bp which was produced during the cloning procedure. Kla2 has been divided into two sub-fragments Kla2A and Kla2B which have, respectively, ARS activity in K. lactis and S. cerevisiae but not the other species. This indicates that these two closely related yeasts have different sequence requirements for ARS activity. Kla2B contains a perfect match to the S. cerevisiae ARS consensus but Kla2A does not. Both Kla2A and Kla1 share a 10 bp sequence as the sole region of homology between them. This sequence, 5'TCATAATATA3', is tentatively offered as defining the ARS consensus sequence for K. lactis.

UI MeSH Term Description Entries
D007716 Kluyveromyces An ascomycetous yeast of the fungal family Saccharomycetaceae, order SACCHAROMYCETALES. Kluyveromyce
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D004718 Saccharomycetales An order of fungi in the phylum Ascomycota that multiply by budding. They include the telomorphic ascomycetous yeasts which are found in a very wide range of habitats. Budding Yeast,Endomycetales,Endomycopsis,Yeast, Budding,Budding Yeasts,Endomycetale,Endomycopses,Saccharomycetale,Yeasts, Budding
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

A Thompson, and S G Oliver
February 1989, Nucleic acids research,
A Thompson, and S G Oliver
May 1983, Journal of bacteriology,
A Thompson, and S G Oliver
February 1991, Current genetics,
A Thompson, and S G Oliver
August 1982, Current genetics,
A Thompson, and S G Oliver
July 1988, Nucleic acids research,
A Thompson, and S G Oliver
November 1985, Plasmid,
Copied contents to your clipboard!