Elucidating the protein substrate recognition of O-GlcNAc transferase (OGT) toward O-GlcNAcase (OGA) using a GlcNAc electrophilic probe. 2021

Adam Kositzke, and Dacheng Fan, and Ao Wang, and Hao Li, and Matthew Worth, and Jiaoyang Jiang
Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.

The essential human O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is the sole enzyme responsible for modifying thousands of intracellular proteins with the monosaccharide O-GlcNAc. This unique modification plays crucial roles in human health and disease, but the substrate recognition of OGT remains poorly understood. Intriguingly, the only human enzyme reported to remove this modification, O-GlcNAcase (OGA), is O-GlcNAc modified. Here, we exploited a GlcNAc electrophilic probe (GEP1A) to rapidly screen OGT mutants in a fluorescence assay that can discriminate between altered OGT-sugar and -protein substrate binding to help elucidate the binding mode of OGT toward OGA protein substrate. Since OGT tetratricopeptide repeat (TPR) domain plays a key role in OGT-OGA binding, we screened 30 OGT TPR mutants, which revealed 15 "ladder like" asparagine or aspartate residues spanning TPRs 3-7 and 10-13.5 that affect OGA O-GlcNAcylation. By applying a truncated OGA construct, we found that OGA's N-terminal region or pseudo histone acetyltransferase domain is not required for its O-GlcNAcylation, suggesting OGT functionally interacts with OGA through its catalytic and/or stalk domains. This work represents the first effort to systemically investigate each OGT TPR and our findings will facilitate the development of new strategies to investigate the role of substrate-specific O-GlcNAcylation.

UI MeSH Term Description Entries
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000117 Acetylglucosamine The N-acetyl derivative of glucosamine. Acetyl Glucosamine,N-Acetyl Glucosamine,N-Acetyl-beta-D-Glucosamine,N-Acetylglucosamine,beta-N-Acetylglucosamine,2-Acetamido-2-Deoxy-D-Glucose,2-Acetamido-2-Deoxyglucose,N-Acetyl-D-Glucosamine,2 Acetamido 2 Deoxy D Glucose,2 Acetamido 2 Deoxyglucose,Glucosamine, Acetyl,Glucosamine, N-Acetyl,N Acetyl D Glucosamine,N Acetyl Glucosamine,N Acetyl beta D Glucosamine,N Acetylglucosamine,beta N Acetylglucosamine
D001619 beta-N-Acetylhexosaminidases A hexosaminidase specific for non-reducing N-acetyl-D-hexosamine residues in N-acetyl-beta-D-hexosaminides. It acts on GLUCOSIDES; GALACTOSIDES; and several OLIGOSACCHARIDES. Two specific mammalian isoenzymes of beta-N-acetylhexoaminidase are referred to as HEXOSAMINIDASE A and HEXOSAMINIDASE B. Deficiency of the type A isoenzyme causes TAY-SACHS DISEASE, while deficiency of both A and B isozymes causes SANDHOFF DISEASE. The enzyme has also been used as a tumor marker to distinguish between malignant and benign disease. beta-N-Acetylhexosaminidase,N-Acetyl-beta-D-hexosaminidase,beta-Hexosaminidase,beta-N-Acetyl-D-hexosaminidase,beta-N-Acetyl-hexosaminidase,N Acetyl beta D hexosaminidase,beta Hexosaminidase,beta N Acetyl D hexosaminidase,beta N Acetyl hexosaminidase,beta N Acetylhexosaminidase,beta N Acetylhexosaminidases
D017351 N-Acetylglucosaminyltransferases Enzymes that catalyze the transfer of N-acetylglucosamine from a nucleoside diphosphate N-acetylglucosamine to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-. N-Acetylglucosamine Transferases,N Acetylglucosamine Transferases,N Acetylglucosaminyltransferases,Transferases, N-Acetylglucosamine
D057930 Click Chemistry Organic chemistry methodology that mimics the modular nature of various biosynthetic processes. It uses highly reliable and selective reactions designed to "click" i.e., rapidly join small modular units together in high yield, without offensive byproducts. In combination with COMBINATORIAL CHEMISTRY TECHNIQUES, it is used for the synthesis of new compounds and combinatorial libraries. Click Chemical Reactions,Click Chemical Techniques,Chemical Reaction, Click,Chemical Reactions, Click,Chemical Technique, Click,Chemical Techniques, Click,Chemistries, Click,Chemistry, Click,Click Chemical Reaction,Click Chemical Technique,Click Chemistries,Reaction, Click Chemical,Reactions, Click Chemical,Technique, Click Chemical,Techniques, Click Chemical

Related Publications

Adam Kositzke, and Dacheng Fan, and Ao Wang, and Hao Li, and Matthew Worth, and Jiaoyang Jiang
December 2017, Nature chemical biology,
Adam Kositzke, and Dacheng Fan, and Ao Wang, and Hao Li, and Matthew Worth, and Jiaoyang Jiang
October 2014, Amino acids,
Adam Kositzke, and Dacheng Fan, and Ao Wang, and Hao Li, and Matthew Worth, and Jiaoyang Jiang
January 2013, PloS one,
Adam Kositzke, and Dacheng Fan, and Ao Wang, and Hao Li, and Matthew Worth, and Jiaoyang Jiang
August 2021, Glycobiology,
Adam Kositzke, and Dacheng Fan, and Ao Wang, and Hao Li, and Matthew Worth, and Jiaoyang Jiang
June 2006, Carbohydrate research,
Adam Kositzke, and Dacheng Fan, and Ao Wang, and Hao Li, and Matthew Worth, and Jiaoyang Jiang
January 2012, PloS one,
Adam Kositzke, and Dacheng Fan, and Ao Wang, and Hao Li, and Matthew Worth, and Jiaoyang Jiang
May 2018, MedChemComm,
Adam Kositzke, and Dacheng Fan, and Ao Wang, and Hao Li, and Matthew Worth, and Jiaoyang Jiang
April 2021, The Journal of general and applied microbiology,
Adam Kositzke, and Dacheng Fan, and Ao Wang, and Hao Li, and Matthew Worth, and Jiaoyang Jiang
August 2014, MedChemComm,
Adam Kositzke, and Dacheng Fan, and Ao Wang, and Hao Li, and Matthew Worth, and Jiaoyang Jiang
June 2017, Open biology,
Copied contents to your clipboard!