The myb oncogene. 1986

J S Lipsick, and M A Baluda
Jonsson Comprehensive Cancer Center, University of California, School of Medicine, Los Angeles 90024.

The highly conserved, single copy c-myb gene has been independently transduced by two avian acute leukemia viruses, AMV and E26. This gene has also undergone insertional mutagenesis by non-acutely transforming murine leukemia viruses in a number of hematopoietic tumors. The common denominator of these retroviral activations of c-myb appears to be truncation of the normal coding region at either or both ends. The role of point mutations in myb-induced leukemogenesis is currently unknown. The products of the c-myb gene and its altered viral counterparts are nuclear proteins, a large fraction of which are associated with the nuclear matrix. In addition, the myb gene products have short half-lives and bind DNA in vitro. These features suggest that myb may act by regulating DNA replication or transcription. Consistent with this notion, the expression of c-myb is cell cycle dependent in several cell types. However, the abundant expression of c-myb in the thymus is not similarly regulated and may serve a different function. The expression of c-myb appears not to be limited to hematopoietic tissues as previously thought and the nature of the hematopoietic specificity of transformation by v-myb is not currently understood. Nevertheless, hematopoietic growth factors and their receptors appear to play an important role in such transformation. Two new experimental systems for studying myb have recently been described. First, the discovery of a myb-related gene in Drosophila should allow the application of powerful classical and molecular genetic approaches. The functional similarity of this distantly related gene to the much more closely related avian and mammalian myb genes is unknown. Second, recent studies of murine myb in normal and abnormal hematopoiesis offers several advantages relative to the avian system, such as in-bred animal strains, a wealth of specific cell-surface markers, and cloned hematopoietic growth factor and receptor genes. Isolation or construction of an acutely transforming murine myb retrovirus may thus be very useful. Several obvious goals for future research will be to define the function of myb proteins within the nucleus, to understand the regulation of myb expression during the cell cycle, to establish which molecular alterations are essential for converting c-myb into a transforming gene, and the determine the role of myb in human malignancies.

UI MeSH Term Description Entries
D009189 Avian Myeloblastosis Virus A species of ALPHARETROVIRUS causing anemia in fowl. Myeloblastosis Virus, Avian,Avian Myeloblastosis Viruses,Myeloblastosis Viruses, Avian,Virus, Avian Myeloblastosis,Viruses, Avian Myeloblastosis
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D001355 Alpharetrovirus A genus of the family RETROVIRIDAE with type C morphology, that causes malignant and other diseases in wild birds and domestic fowl. Avian Erythroblastosis Virus,Retroviruses Type C, Avian,Type C Avian Retroviruses,Avian Leukosis-Sarcoma Viruses,Erythroblastosis Virus, Avian,Retroviruses, ALV-Related,ALV-Related Retrovirus,ALV-Related Retroviruses,Alpharetroviruses,Avian Erythroblastosis Viruses,Avian Leukosis Sarcoma Viruses,Avian Leukosis-Sarcoma Virus,Erythroblastosis Viruses, Avian,Leukosis-Sarcoma Virus, Avian,Leukosis-Sarcoma Viruses, Avian,Retrovirus, ALV-Related,Retroviruses, ALV Related,Virus, Avian Erythroblastosis,Virus, Avian Leukosis-Sarcoma,Viruses, Avian Erythroblastosis,Viruses, Avian Leukosis-Sarcoma
D012191 Retroviridae Proteins Proteins from the family Retroviridae. The most frequently encountered member of this family is the Rous sarcoma virus protein. Leukovirus Proteins,Retrovirus Proteins,Proteins, Leukovirus,Proteins, Retroviridae,Proteins, Retrovirus
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

J S Lipsick, and M A Baluda
June 1990, Biochimica et biophysica acta,
J S Lipsick, and M A Baluda
April 1994, Oncogene,
J S Lipsick, and M A Baluda
January 2001, Blood cells, molecules & diseases,
J S Lipsick, and M A Baluda
October 1992, The Tohoku journal of experimental medicine,
J S Lipsick, and M A Baluda
January 1989, Nucleic acids research,
J S Lipsick, and M A Baluda
January 1996, Current topics in microbiology and immunology,
J S Lipsick, and M A Baluda
November 1985, Molecular and cellular biology,
Copied contents to your clipboard!