Biomaterials to enhance antigen-specific T cell expansion for cancer immunotherapy. 2021

Ariel Isser, and Natalie K Livingston, and Jonathan P Schneck
Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA.

T cells are often referred to as the 'guided missiles' of our immune system because of their capacity to traffic to and accumulate at sites of infection or disease, destroy infected or mutated cells with high specificity and sensitivity, initiate systemic immune responses, sterilize infections, and produce long-lasting memory. As a result, they are a common target for a range of cancer immunotherapies. However, the myriad of challenges of expanding large numbers of T cells specific to each patient's unique tumor antigens has led researchers to develop alternative, more scalable approaches. Biomaterial platforms for expansion of antigen-specific T cells offer a path forward towards broadscale translation of personalized immunotherapies by providing "off-the-shelf", yet modular approaches to customize the phenotype, function, and specificity of T cell responses. In this review, we discuss design considerations and progress made in the development of ex vivo and in vivo technologies for activating antigen-specific T cells, including artificial antigen presenting cells, T cell stimulating scaffolds, biomaterials-based vaccines, and artificial lymphoid organs. Ultimate translation of these platforms as a part of cancer immunotherapy regimens hinges on an in-depth understanding of T cell biology and cell-material interactions.

UI MeSH Term Description Entries
D007167 Immunotherapy Manipulation of the host's immune system in treatment of disease. It includes both active and passive immunization as well as immunosuppressive therapy to prevent graft rejection. Immunotherapies
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000938 Antigen-Presenting Cells A heterogeneous group of immunocompetent cells that mediate the cellular immune response by processing and presenting antigens to the T-cells. Traditional antigen-presenting cells include MACROPHAGES; DENDRITIC CELLS; LANGERHANS CELLS; and B-LYMPHOCYTES. FOLLICULAR DENDRITIC CELLS are not traditional antigen-presenting cells, but because they hold antigen on their cell surface in the form of IMMUNE COMPLEXES for B-cell recognition they are considered so by some authors. Accessory Cells, Immunologic,Antigen-Presenting Cell,Immunologic Accessory Cells,Accessory Cell, Immunologic,Cell, Immunologic Accessory,Cells, Immunologic Accessory,Immunologic Accessory Cell,Antigen Presenting Cell,Antigen Presenting Cells,Cell, Antigen-Presenting,Cells, Antigen-Presenting
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

Ariel Isser, and Natalie K Livingston, and Jonathan P Schneck
July 2017, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine,
Ariel Isser, and Natalie K Livingston, and Jonathan P Schneck
October 2005, Cancer biotherapy & radiopharmaceuticals,
Ariel Isser, and Natalie K Livingston, and Jonathan P Schneck
December 2023, Cancer cell,
Ariel Isser, and Natalie K Livingston, and Jonathan P Schneck
January 2016, [Rinsho ketsueki] The Japanese journal of clinical hematology,
Ariel Isser, and Natalie K Livingston, and Jonathan P Schneck
June 2023, ACS applied bio materials,
Ariel Isser, and Natalie K Livingston, and Jonathan P Schneck
June 2022, Cancers,
Ariel Isser, and Natalie K Livingston, and Jonathan P Schneck
April 2022, Journal of controlled release : official journal of the Controlled Release Society,
Ariel Isser, and Natalie K Livingston, and Jonathan P Schneck
August 2008, Blood,
Ariel Isser, and Natalie K Livingston, and Jonathan P Schneck
July 1998, Molecular medicine today,
Ariel Isser, and Natalie K Livingston, and Jonathan P Schneck
May 2022, Advanced science (Weinheim, Baden-Wurttemberg, Germany),
Copied contents to your clipboard!