Glyphosate escalates horizontal transfer of conjugative plasmid harboring antibiotic resistance genes. 2021

Hongna Zhang, and Jingbo Liu, and Lei Wang, and Zhenzhen Zhai
College of Bioscience and Engineering, Hebei University of Economics and Business , Shijiazhuang City, China.

Glyphosate has been frequently detected in water environments because of the wide use for controlling weed in farm lands and urban areas. Presently, the focus of the majority of studies is placed on the toxicity of glyphosate on humans and animals. However, the effects of glyphosate on horizontal transfer of conjugative plasmid carrying antibiotic resistance gene (ARG) are largely unknown. Here, we explored the ability and potential mechanism of glyphosate for accelerating horizontal transfer of conjugative plasmid-mediated ARG. The results showed that glyphosate can effectively boost horizontal transfer rate of conjugative plasmid carrying ARG. The possible mechanism analysis demonstrated that over-production of reactive oxygen species and reactive nitrogen species effectively regulated expression levels of bacterial outer membrane protein and conjugative transfer-related genes, thereby resulting into elevated horizontal transfer rate of plasmid-mediated ARG. In conclusion, this study casts new understanding into the biological effects of glyphosate on ARG.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000097797 Glyphosate Active compound in herbicidal formulations that inhibits 3-PHOSPHOSHIKIMATE 1-CARBOXYVINYLTRANSFERASE. Gliphosate,Glyphosate Hydrochloride (2:1),Glyphosate, Calcium Salt,Glyphosate, Calcium Salt (1:1),Glyphosate, Copper (2+) Salt,Glyphosate, Dilithium Salt,Glyphosate, Disodium Salt,Glyphosate, Magnesium Salt,Glyphosate, Magnesium Salt (2:1),Glyphosate, Monoammonium Salt,Glyphosate, Monopotassium Salt,Glyphosate, Monosodium Salt,Glyphosate, Sodium Salt,Glyphosate, Zinc Salt,Yerbimat,Kalach 360 SL,N-(phosphonomethyl)glycine,Roundup
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D022761 Gene Transfer, Horizontal The naturally occurring transmission of genetic information between organisms, related or unrelated, circumventing parent-to-offspring transmission. Horizontal gene transfer may occur via a variety of naturally occurring processes such as GENETIC CONJUGATION; GENETIC TRANSDUCTION; and TRANSFECTION. It may result in a change of the recipient organism's genetic composition (TRANSFORMATION, GENETIC). Gene Transfer, Lateral,Horizontal Gene Transfer,Lateral Gene Transfer,Recombination, Interspecies,Recombination, Interspecific,Gene Transfers, Lateral,Interspecies Recombination,Interspecific Recombination,Lateral Gene Transfers
D024881 Drug Resistance, Bacterial The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance, Bacterial,Antibacterial Drug Resistance

Related Publications

Hongna Zhang, and Jingbo Liu, and Lei Wang, and Zhenzhen Zhai
September 2022, Environmental science & technology,
Hongna Zhang, and Jingbo Liu, and Lei Wang, and Zhenzhen Zhai
May 2024, Journal of environmental management,
Hongna Zhang, and Jingbo Liu, and Lei Wang, and Zhenzhen Zhai
July 2015, Environmental science & technology,
Hongna Zhang, and Jingbo Liu, and Lei Wang, and Zhenzhen Zhai
March 2020, Environment international,
Hongna Zhang, and Jingbo Liu, and Lei Wang, and Zhenzhen Zhai
April 2023, Water research,
Hongna Zhang, and Jingbo Liu, and Lei Wang, and Zhenzhen Zhai
January 2022, Pharmacological research,
Hongna Zhang, and Jingbo Liu, and Lei Wang, and Zhenzhen Zhai
August 2020, Microorganisms,
Hongna Zhang, and Jingbo Liu, and Lei Wang, and Zhenzhen Zhai
February 2023, Journal of hazardous materials,
Hongna Zhang, and Jingbo Liu, and Lei Wang, and Zhenzhen Zhai
March 2022, The Science of the total environment,
Hongna Zhang, and Jingbo Liu, and Lei Wang, and Zhenzhen Zhai
December 2022, Environmental science & technology,
Copied contents to your clipboard!