Quaternary interactions in hemoglobin beta subunit tetramers. Kinetics of ligand binding and self-assembly. 1988

J S Philo, and J W Lary, and T M Schuster
Department of Molecular and Cell Biology, University of Connecticut, Storrs 06268.

We have investigated the rates of monomer in equilibrium with tetramer self-association of oxygenated beta SH subunits of human hemoglobin A as well as the influence of self-association on the binding kinetics for O2 and CO. A 4 beta in equilibrium with 2 beta 2 in equilibrium with beta 4 assembly pathway can be used to describe the association equilibria and kinetics. We have determined all four elementary rate constants for this assembly pathway at 15 degrees C in 0.1 M Tris-HCl, 0.1 M NaCl, 1 mM Na2EDTA, pH 7.4. These data imply that a significant amount (approximately 17%) of beta 2 can be present. Laser photolysis kinetic studies of O2 binding indicate that the O2 association rate constant is unaffected by the degree of self-association. In contrast, photolysis of beta CO solutions shows an overall rate of CO binding that increases at higher protein concentrations. These data are consistent with a concentration-dependent equilibrium between two protein species with CO association rates differing by a factor of 2.5, but they do not appear to be compatible with a direct assignment of different CO binding rates to the different assembly states. Rather, we believe the data imply that CO binding to beta oligomers is heterogeneous, with both a fast binding and a slow binding form being present in single association states. The fast binding form predominates (approximately equal to 87%) in beta 4, while the beta monomer has very little or none of the fast binding form. We propose that the slow binding component within beta 4 may be those subunits with rotationally disordered hemes (La Mar, G. N., Yamamoto, Y., Jue, T., Smith, K. M., and Pandey, R. K. (1985) Biochemistry 24, 3826-3831). The implications of these findings for the use of isolated subunits as models for the subunits within "R state" hemoglobin tetramers are discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007834 Lasers An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum. Masers,Continuous Wave Lasers,Pulsed Lasers,Q-Switched Lasers,Continuous Wave Laser,Laser,Laser, Continuous Wave,Laser, Pulsed,Laser, Q-Switched,Lasers, Continuous Wave,Lasers, Pulsed,Lasers, Q-Switched,Maser,Pulsed Laser,Q Switched Lasers,Q-Switched Laser
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D002248 Carbon Monoxide Carbon monoxide (CO). A poisonous colorless, odorless, tasteless gas. It combines with hemoglobin to form carboxyhemoglobin, which has no oxygen carrying capacity. The resultant oxygen deprivation causes headache, dizziness, decreased pulse and respiratory rates, unconsciousness, and death. (From Merck Index, 11th ed) Monoxide, Carbon
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

J S Philo, and J W Lary, and T M Schuster
October 1980, Biophysical journal,
J S Philo, and J W Lary, and T M Schuster
May 1992, Biophysical chemistry,
J S Philo, and J W Lary, and T M Schuster
June 1984, The Journal of biological chemistry,
J S Philo, and J W Lary, and T M Schuster
November 2016, Soft matter,
J S Philo, and J W Lary, and T M Schuster
May 1998, Biochemistry,
J S Philo, and J W Lary, and T M Schuster
January 2003, Biophysical chemistry,
J S Philo, and J W Lary, and T M Schuster
September 1988, European journal of biochemistry,
J S Philo, and J W Lary, and T M Schuster
May 1971, Biochemical and biophysical research communications,
Copied contents to your clipboard!