Membrane differentiation markers of airway epithelial secretory cells. 1988

K Wasano, and K C Kim, and R M Niles, and J S Brody
Pulmonary Center, Boston University School of Medicine, Massachusetts 02118.

We describe here a system for culturing epithelial cells isolated from hamster trachea, which results in a highly enriched population of mucus-secreting cells. The culture system has enabled us to study the process of secretory cell differentiation in vitro. We found that epithelial secretory cells, in vivo and after 5 days in vitro, selectively bind the lectin Helix pomatia agglutinin (HPA) to apical and, to a lesser extent, basolateral surfaces as well as to mucin granules and intracellular secretory organelles. SDS-PAGE gels of detergent extracts of secretory cells cultured for 5 days reveal three HPA-binding glycoproteins with MW of 120 KD, 220 KD, and greater than 400 KD. The high-MW glycoprotein appears identical to mucin, since it is found in secretions from intact trachea and in spent media from 5-day cultures. It does not appear in spent media from 3-day cultures when cells contain few mucous granules and secrete little mucin. The 220 KD HPA-binding glycoprotein is also present in 5-day but not in 3-day cultures. In contrast, the 120 KD glycoprotein is present at both times. HPA-gp120 is a hydrophobic integral membrane protein, whereas HPA-gp220 and mucin are hydrophilic and are membrane associated. These studies define three membrane glycoproteins, one of which is specific for the tracheal epithelial secretory cell regardless of its mucous content, whereas the other two glycoproteins correlate with mucin secretion. They also demonstrate that, in the fully differentiated state, mucin is bound in a non-covalent fashion to the apical plasma membrane of the tracheal epithelial secretory cell.

UI MeSH Term Description Entries
D008297 Male Males
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D009077 Mucins High molecular weight mucoproteins that protect the surface of EPITHELIAL CELLS by providing a barrier to particulate matter and microorganisms. Membrane-anchored mucins may have additional roles concerned with protein interactions at the cell surface. Mucin
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

K Wasano, and K C Kim, and R M Niles, and J S Brody
April 1990, Environmental health perspectives,
K Wasano, and K C Kim, and R M Niles, and J S Brody
May 1995, In vitro cellular & developmental biology. Animal,
K Wasano, and K C Kim, and R M Niles, and J S Brody
October 1972, Nihon Jibiinkoka Gakkai kaiho,
K Wasano, and K C Kim, and R M Niles, and J S Brody
October 1986, Biochemical Society transactions,
K Wasano, and K C Kim, and R M Niles, and J S Brody
April 2002, Acta oto-laryngologica,
K Wasano, and K C Kim, and R M Niles, and J S Brody
August 2007, American journal of respiratory cell and molecular biology,
K Wasano, and K C Kim, and R M Niles, and J S Brody
October 1997, The European respiratory journal,
K Wasano, and K C Kim, and R M Niles, and J S Brody
July 1993, Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete,
K Wasano, and K C Kim, and R M Niles, and J S Brody
June 1986, Clinics in chest medicine,
K Wasano, and K C Kim, and R M Niles, and J S Brody
April 1995, The American journal of physiology,
Copied contents to your clipboard!