Conformational requirements of substrates for activity with phenylethanolamine N-methyltransferase. 1988

G L Grunewald, and Q Ye, and L Kieffer, and J A Monn
Department of Medicinal Chemistry, University of Kansas, Lawrence 66045.

beta-Phenylethanolamines have long been known to be substrates for the enzyme that converts norepinephrine to epinephrine (phenylethanolamine N-methyltransferase, PNMT, EC 2.1.1.28). In an effort to determine which, if any, particular conformation of the aminoethyl side chain of phenylethanolamines is required for PNMT active site binding and catalysis, we have prepared and evaluated conformationally restricted phenylethanolamine analogues 8-10. The folded phenylethanolamine derivative 4-hydroxy-1,2,3,4-tetrahydroisoquinoline (8) is not a substrate and does not interact with the enzyme active site as an inhibitor as well as 1,2,3,4-tetrahydroisoquinoline (6). In the cyclic 2-aminotetralol systems, only cis-phenylethanolamine derivative 9 demonstrates activity as a PNMT substrate. The corresponding trans isomer 10 is not a substrate, in spite of enhanced active site interactions with respect to the parent analogue (2-aminotetralin, 4). Comparison of the inhibition constants for the folded (8,Ki = 175 microM) and extended (10,Ki = 9 microM) phenylethanolamine analogues strongly suggests that simultaneous binding of both the amino and hydroxyl functionalities to the PNMT active site requires an extended aminoethyl side chain conformation.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010625 Phenylethanolamine N-Methyltransferase A methyltransferase that catalyzes the reaction of S-adenosyl-L-methionine and phenylethanolamine to yield S-adenosyl-L-homocysteine and N-methylphenylethanolamine. It can act on various phenylethanolamines and converts norepinephrine into epinephrine. (From Enzyme Nomenclature, 1992) EC 2.1.1.28. Phenethanolamine N-Methyltransferase,Noradrenalin N-Methyltransferase,Noradrenaline N-Methyltransferase,Norepinephrine Methyltransferase,Norepinephrine N-Methyltransferase,Methyltransferase, Norepinephrine,Noradrenalin N Methyltransferase,Noradrenaline N Methyltransferase,Norepinephrine N Methyltransferase,Phenethanolamine N Methyltransferase,Phenylethanolamine N Methyltransferase
D010627 Phenethylamines A group of compounds that are derivatives of beta- aminoethylbenzene which is structurally and pharmacologically related to amphetamine. (From Merck Index, 11th ed) Phenylethylamines
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

G L Grunewald, and Q Ye, and L Kieffer, and J A Monn
October 1972, Journal of medicinal chemistry,
G L Grunewald, and Q Ye, and L Kieffer, and J A Monn
November 1973, Molecular pharmacology,
G L Grunewald, and Q Ye, and L Kieffer, and J A Monn
January 1988, Journal of medicinal chemistry,
G L Grunewald, and Q Ye, and L Kieffer, and J A Monn
November 2004, Nihon rinsho. Japanese journal of clinical medicine,
G L Grunewald, and Q Ye, and L Kieffer, and J A Monn
August 1999, Nihon rinsho. Japanese journal of clinical medicine,
G L Grunewald, and Q Ye, and L Kieffer, and J A Monn
June 1982, Biochemical medicine,
G L Grunewald, and Q Ye, and L Kieffer, and J A Monn
January 1978, Biochemical pharmacology,
G L Grunewald, and Q Ye, and L Kieffer, and J A Monn
March 1973, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
G L Grunewald, and Q Ye, and L Kieffer, and J A Monn
January 1977, Molecular pharmacology,
Copied contents to your clipboard!