Repeated Activation of Noradrenergic Receptors in the Ventromedial Hypothalamus Suppresses the Response to Hypoglycemia. 2021

Anne-Sophie Sejling, and Peili Wang, and Wanling Zhu, and Rawad Farhat, and Nicholas Knight, and Daniel Appadurai, and Owen Chan
Department of Endocrinology and Nephrology, Nordsjællands Hospital, Dyrehavevej, Denmark.

Activation of the adrenergic system in response to hypoglycemia is important for proper recovery from low glucose levels. However, it has been suggested that repeated adrenergic stimulation may also contribute to counterregulatory failure, but the underlying mechanisms are not known. The aim of this study was to establish whether repeated activation of noradrenergic receptors in the ventromedial hypothalamus (VMH) contributes to blunting of the counterregulatory response by enhancing local lactate production. The VMH of nondiabetic rats were infused with either artificial extracellular fluid, norepinephrine (NE), or salbutamol for 3 hours/day for 3 consecutive days before they underwent a hypoglycemic clamp with microdialysis to monitor changes in VMH lactate levels. Repeated exposure to NE or salbutamol suppressed both the glucagon and epinephrine responses to hypoglycemia compared to controls. Furthermore, antecedent NE and salbutamol treatments raised extracellular lactate levels in the VMH. To determine whether the elevated lactate levels were responsible for impairing the hormone response, we pharmacologically inhibited neuronal lactate transport in a subgroup of NE-treated rats during the clamp. Blocking neuronal lactate utilization improved the counterregulatory hormone responses in NE-treated animals, suggesting that repeated activation of VMH β2-adrenergic receptors increases local lactate levels which in turn, suppresses the counterregulatory hormone response to hypoglycemia.

UI MeSH Term Description Entries
D007003 Hypoglycemia A syndrome of abnormally low BLOOD GLUCOSE level. Clinical hypoglycemia has diverse etiologies. Severe hypoglycemia eventually lead to glucose deprivation of the CENTRAL NERVOUS SYSTEM resulting in HUNGER; SWEATING; PARESTHESIA; impaired mental function; SEIZURES; COMA; and even DEATH. Fasting Hypoglycemia,Postabsorptive Hypoglycemia,Postprandial Hypoglycemia,Reactive Hypoglycemia,Hypoglycemia, Fasting,Hypoglycemia, Postabsorptive,Hypoglycemia, Postprandial,Hypoglycemia, Reactive
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D012008 Recurrence The return of a sign, symptom, or disease after a remission. Recrudescence,Relapse,Recrudescences,Recurrences,Relapses
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D000322 Adrenergic Agonists Drugs that bind to and activate adrenergic receptors. Adrenomimetics,Adrenergic Agonist,Adrenergic Receptor Agonist,Adrenergic Receptor Agonists,Receptor Agonists, Adrenergic,Agonist, Adrenergic,Agonist, Adrenergic Receptor,Agonists, Adrenergic,Agonists, Adrenergic Receptor,Receptor Agonist, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014697 Ventromedial Hypothalamic Nucleus A nucleus of the middle hypothalamus, the largest cell group of the tuberal region with small-to-medium size cells. Hypothalamic Nucleus, Ventromedial,Nucleus, Ventromedial Hypothalamic

Related Publications

Anne-Sophie Sejling, and Peili Wang, and Wanling Zhu, and Rawad Farhat, and Nicholas Knight, and Daniel Appadurai, and Owen Chan
September 2006, Brain research,
Anne-Sophie Sejling, and Peili Wang, and Wanling Zhu, and Rawad Farhat, and Nicholas Knight, and Daniel Appadurai, and Owen Chan
July 1997, European journal of endocrinology,
Anne-Sophie Sejling, and Peili Wang, and Wanling Zhu, and Rawad Farhat, and Nicholas Knight, and Daniel Appadurai, and Owen Chan
December 2011, American journal of physiology. Regulatory, integrative and comparative physiology,
Anne-Sophie Sejling, and Peili Wang, and Wanling Zhu, and Rawad Farhat, and Nicholas Knight, and Daniel Appadurai, and Owen Chan
December 2011, Diabetes,
Anne-Sophie Sejling, and Peili Wang, and Wanling Zhu, and Rawad Farhat, and Nicholas Knight, and Daniel Appadurai, and Owen Chan
June 2016, American journal of physiology. Regulatory, integrative and comparative physiology,
Anne-Sophie Sejling, and Peili Wang, and Wanling Zhu, and Rawad Farhat, and Nicholas Knight, and Daniel Appadurai, and Owen Chan
June 1973, The American journal of physiology,
Anne-Sophie Sejling, and Peili Wang, and Wanling Zhu, and Rawad Farhat, and Nicholas Knight, and Daniel Appadurai, and Owen Chan
June 2006, The Journal of clinical investigation,
Anne-Sophie Sejling, and Peili Wang, and Wanling Zhu, and Rawad Farhat, and Nicholas Knight, and Daniel Appadurai, and Owen Chan
December 2018, American journal of physiology. Endocrinology and metabolism,
Anne-Sophie Sejling, and Peili Wang, and Wanling Zhu, and Rawad Farhat, and Nicholas Knight, and Daniel Appadurai, and Owen Chan
September 2007, American journal of physiology. Endocrinology and metabolism,
Anne-Sophie Sejling, and Peili Wang, and Wanling Zhu, and Rawad Farhat, and Nicholas Knight, and Daniel Appadurai, and Owen Chan
April 2006, Diabetes,
Copied contents to your clipboard!