Comparison of posttranslational protein modification by amino acid addition after crush injury to sciatic and optic nerves of rats. 1988

S Shyne-Athwal, and G Chakraborty, and E Gage, and N A Ingoglia
Department of Physiology, UMDNJ-New Jersey Medical School, Newark 07103-2757.

Posttranslational protein modifications by the addition of amino acids are reactions which occur in intact sciatic and optic nerves of rats. The nerves differ, however, in that 2 h after crush injury these reactions are activated in sciatic but not in optic nerves. As sciatic nerves will eventually regenerate, whereas optic nerves will not, we have proposed that the activation of these reactions is correlated with the ability of a nerve to regenerate. The current experiments examined the posttranslational addition of amino acids to proteins at times greater than 2 h after nerve crush, during sciatic nerve regeneration and optic nerve degeneration. We also examined the optic nerve for morphologic correlates to changes in protein modification and partially characterized the proteins modified by [3H]Lys in the regenerating sciatic nerve using two-dimensional sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). In a segment of sciatic nerve taken from a region just proximal to the site of crush, protein modification by covalent addition of [3H]Arg, [3H]Lys and [3H]Leu increased during both posttraumatic (2 h postcrush) and regenerative (6 days and 14 days postcrush) stages. Two-dimensional PAGE of [3H]Lys modified sciatic nerve proteins 6 days after crush injury showed labeling of proteins having molecular masses in the 18,000- to 20,000-, 30,000- to 40,000-, and 80,000- to 100,000-Da ranges, with neutral or basic isoelectric points (pI 7.1 to 8.0). In the retinal portion of the crushed optic nerve, incorporation of the same amino acids was unchanged or depressed to 21 days postcrush, except at 6 days postcrush when the incorporation of all three amino acids into proteins was increased threefold. These increases correlated with the appearance of terminal end bulbs in the portion of nerve analyzed. Histological examination of each nerve 2 h postcrush showed marked edema in the optic but not the sciatic nerve, a condition which may be related to the ability of sciatic and inability of optic nerves to activate protein modification reactions.

UI MeSH Term Description Entries
D008297 Male Males
D009409 Nerve Crush Treatment of muscles and nerves under pressure as a result of crush injuries. Crush, Nerve
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012584 Sciatic Nerve A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE. Nerve, Sciatic,Nerves, Sciatic,Sciatic Nerves
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

S Shyne-Athwal, and G Chakraborty, and E Gage, and N A Ingoglia
March 1986, Journal of neurochemistry,
S Shyne-Athwal, and G Chakraborty, and E Gage, and N A Ingoglia
January 1991, Journal of molecular neuroscience : MN,
S Shyne-Athwal, and G Chakraborty, and E Gage, and N A Ingoglia
November 1984, Journal of neurochemistry,
S Shyne-Athwal, and G Chakraborty, and E Gage, and N A Ingoglia
April 1990, Journal of neuroscience research,
S Shyne-Athwal, and G Chakraborty, and E Gage, and N A Ingoglia
January 2015, PloS one,
S Shyne-Athwal, and G Chakraborty, and E Gage, and N A Ingoglia
January 1990, Restorative neurology and neuroscience,
S Shyne-Athwal, and G Chakraborty, and E Gage, and N A Ingoglia
March 1987, Journal of neurochemistry,
S Shyne-Athwal, and G Chakraborty, and E Gage, and N A Ingoglia
April 1990, Biochimica et biophysica acta,
S Shyne-Athwal, and G Chakraborty, and E Gage, and N A Ingoglia
January 2019, Frontiers in cellular neuroscience,
S Shyne-Athwal, and G Chakraborty, and E Gage, and N A Ingoglia
June 1991, The Journal of comparative neurology,
Copied contents to your clipboard!