On the substrate specificity of rat liver phospholipase A1. 1988

G L Kucera, and P J Sisson, and M J Thomas, and M Waite
Department of Biochemistry, Bowman Gray School of Medicine, Winston-Salem, North Carolina 27103.

The substrate specificity of purified phospholipase A1 was studied using mixed micelles of phospholipid and Triton X-100. The kinetic analysis employed determined Vmax, Ks (a dissociation constant for the phospholipase A1-mixed micelle complex), and Km (the Michaelis constant for the catalytic step which reflects the binding of the enzyme to the substrate in the interface). The order of Vmax values was phosphatidic acid greater than phosphatidylethanolamine greater than phosphatidylcholine greater than phosphatidylserine. The order of Ks values was phosphatidylcholine greater than phosphatidylethanolamine greater than phosphatidic acid greater than phosphatidylserine; the order of Km values was phosphatidic acid greater than phosphatidylethanolamine = phosphatidylserine greater than phosphatidylcholine. When present together, phosphatidylcholine inhibited the hydrolysis of phosphatidylethanolamine but phosphatidylethanolamine did not affect the hydrolysis of phosphatidylcholine. Sphingomyelin, phosphatidylcholine plasmalogen, and phosphatidylethanolamine plasmalogen had no effect on the hydrolysis of phosphatidylethanolamine. The effects of the reaction products, lysolipids and/or fatty acids, were also considered for their influence on phosphatidylethanolamine hydrolysis catalyzed by phospholipase A1. Free fatty acid was found to inhibit, whereas lysophospholipids stimulated hydrolysis of phosphatidylethanolamine. In a mixture of 1,2- and 1,3-diacylglycerides in mixed micelles, only the acyl chain at the sn-1 position of the 1,2 compound was hydrolyzed. Surface charge did not modulate the hydrolysis of phosphatidylcholine vesicles or mixed micelles. In conclusion, it is hypothesized that steric hindrance at position 3 of the glycerol regulates substrate binding in the active site and that an acyl group in position 1 is favored over a vinyl ether linkage for binding.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008823 Micelles Particles consisting of aggregates of molecules held loosely together by secondary bonds. The surface of micelles are usually comprised of amphiphatic compounds that are oriented in a way that minimizes the energy of interaction between the micelle and its environment. Liquids that contain large numbers of suspended micelles are referred to as EMULSIONS. Micelle
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010740 Phospholipases A class of enzymes that catalyze the hydrolysis of phosphoglycerides or glycerophosphatidates. EC 3.1.-. Lecithinases,Lecithinase,Phospholipase
D010741 Phospholipases A Phospholipases that hydrolyze one of the acyl groups of phosphoglycerides or glycerophosphatidates.
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus

Related Publications

G L Kucera, and P J Sisson, and M J Thomas, and M Waite
October 1974, The Journal of biological chemistry,
G L Kucera, and P J Sisson, and M J Thomas, and M Waite
March 1983, The Biochemical journal,
G L Kucera, and P J Sisson, and M J Thomas, and M Waite
January 1987, The Journal of pharmacology and experimental therapeutics,
G L Kucera, and P J Sisson, and M J Thomas, and M Waite
February 1992, Biochemical pharmacology,
G L Kucera, and P J Sisson, and M J Thomas, and M Waite
October 1963, Biochimica et biophysica acta,
G L Kucera, and P J Sisson, and M J Thomas, and M Waite
October 1992, Molecular and cellular biochemistry,
G L Kucera, and P J Sisson, and M J Thomas, and M Waite
January 1989, Biochemistry international,
G L Kucera, and P J Sisson, and M J Thomas, and M Waite
February 1971, Biochimica et biophysica acta,
G L Kucera, and P J Sisson, and M J Thomas, and M Waite
March 1979, Biochimica et biophysica acta,
G L Kucera, and P J Sisson, and M J Thomas, and M Waite
March 1975, Biochimica et biophysica acta,
Copied contents to your clipboard!