Kinetics of synthesis and phosphorylation of respiratory syncytial virus polypeptides. 1988

D M Lambert, and J Hambor, and M Diebold, and B Galinski
Department of Molecular Virology, James N. Gamble Institute of Medical Research, Cincinnati, Ohio 45219.

The kinetics of synthesis of [35S]methionine-labelled respiratory syncytial virus-specific proteins were studied in CV-1 cells infected at high multiplicity. Immunoprecipitated viral proteins resolved by SDS-PAGE were quantified by scanning fluorographs of protein bands. The nucleocapsid (N) protein was detectable by 2 h post-infection (p.i.), whereas the phospho- (P), matrix (M) and fusion (Fo) proteins and Vp24 (a matrix-like protein) were first detected between 4 and 6 h p.i. Synthesis of the glyco- (G) protein was first detected at 6 h p.i. and reached its peak synthesis rate at 10 h p.i. Virus-specific P, M and Vp24 proteins were phosphorylated in infected cells. The P protein was highly phosphorylated in purified virions whereas phosphorylated species of the M and Vp24 proteins were minor components. The phosphorylated form of the P protein was detected by monoclonal antibody precipitation, confirming the identity of this protein. The N protein was not phosphorylated in infected cells or in virions. Synthesis of [35S]methionine-labelled proteins preceded detectable 32Pi labelling by several hours. The putative phosphorylated M protein was detected at 6 h p.i. before phosphorylated forms of P and Vp24 were seen. The timing of appearance of the phosphorylated species of P and Vp24 proteins in infected cells corresponded to the release of infectious virions from infected cell monolayers at 10 to 12 h p.i.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010452 Peptide Biosynthesis The production of PEPTIDES or PROTEINS by the constituents of a living organism. The biosynthesis of proteins on RIBOSOMES following an RNA template is termed translation (TRANSLATION, GENETIC). There are other, non-ribosomal peptide biosynthesis (PEPTIDE BIOSYNTHESIS, NUCLEIC ACID-INDEPENDENT) mechanisms carried out by PEPTIDE SYNTHASES and PEPTIDYLTRANSFERASES. Further modifications of peptide chains yield functional peptide and protein molecules. Biosynthesis, Peptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D012136 Respiratory Syncytial Viruses A group of viruses in the PNEUMOVIRUS genus causing respiratory infections in various mammals. Humans and cattle are most affected but infections in goats and sheep have also been reported. Chimpanzee Coryza Agent,Orthopneumovirus,RSV Respiratory Syncytial Virus,Chimpanzee Coryza Agents,Coryza Agent, Chimpanzee,Orthopneumoviruses,Respiratory Syncytial Virus,Syncytial Virus, Respiratory,Virus, Respiratory Syncytial
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000914 Antibodies, Viral Immunoglobulins produced in response to VIRAL ANTIGENS. Viral Antibodies

Related Publications

D M Lambert, and J Hambor, and M Diebold, and B Galinski
June 1985, The Journal of general virology,
D M Lambert, and J Hambor, and M Diebold, and B Galinski
January 1977, Journal of virology,
D M Lambert, and J Hambor, and M Diebold, and B Galinski
September 1985, The Journal of general virology,
D M Lambert, and J Hambor, and M Diebold, and B Galinski
January 1980, Microbiology and immunology,
D M Lambert, and J Hambor, and M Diebold, and B Galinski
April 1983, The Journal of general virology,
D M Lambert, and J Hambor, and M Diebold, and B Galinski
May 1979, Virology,
D M Lambert, and J Hambor, and M Diebold, and B Galinski
March 1985, The Journal of general virology,
D M Lambert, and J Hambor, and M Diebold, and B Galinski
January 1990, Archives of virology,
D M Lambert, and J Hambor, and M Diebold, and B Galinski
September 1983, The Journal of general virology,
Copied contents to your clipboard!