Morphogenesis of yellow fever virus 17D in infected cell cultures. 1988

R Ishak, and D G Tovey, and C R Howard
Department of Medical Microbiology, London School of Hygiene and Tropical Medicine, U.K.

The morphogenesis of yellow fever virus replication was examined in infected Vero cell cultures. Penetration and uncoating occurred by endocytosis with the formation of coated vesicles, similar to that demonstrated for other enveloped and unenveloped viruses. Inclusion bodies associated with newly formed nucleocapsids were evident in the perinuclear region during the growth cycle. No evidence of RNA synthesis in the vicinity of the inclusion bodies was obtained by autoradiography, suggesting that genome replication and assembly of viral nucleocapsids occur at separate cytoplasmic sites. An excessive proliferation of membrane-bound organelles involving both vacuoles and endoplasmic reticula was the most striking feature of virus-infected cells late in infection. No morphological changes in the appearance of nuclei or mitochondria were detected. Virus release appeared to occur by movement of nascent virions through the proliferated endoplasmic reticula followed by exocytic fusion of virus-containing vesicles with the plasmalemma. A possible mechanism whereby the internal nucleocapsid acquires an outer envelope is discussed.

UI MeSH Term Description Entries
D007181 Inclusion Bodies, Viral An area showing altered staining behavior in the nucleus or cytoplasm of a virus-infected cell. Some inclusion bodies represent "virus factories" in which viral nucleic acid or protein is being synthesized; others are merely artifacts of fixation and staining. One example, Negri bodies, are found in the cytoplasm or processes of nerve cells in animals that have died from rabies. Negri Bodies,Viral Inclusion Bodies,Negri Body,Bodies, Negri,Bodies, Viral Inclusion,Body, Negri,Body, Viral Inclusion,Inclusion Body, Viral,Viral Inclusion Body
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014709 Vero Cells A CELL LINE derived from the kidney of the African green (vervet) monkey, (CHLOROCEBUS AETHIOPS) used primarily in virus replication studies and plaque assays. Cell, Vero,Cells, Vero,Vero Cell
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

R Ishak, and D G Tovey, and C R Howard
November 1962, The American journal of tropical medicine and hygiene,
R Ishak, and D G Tovey, and C R Howard
December 2013, The American journal of tropical medicine and hygiene,
R Ishak, and D G Tovey, and C R Howard
November 2013, Journal of virology,
R Ishak, and D G Tovey, and C R Howard
January 1964, Acta pathologica et microbiologica Scandinavica,
R Ishak, and D G Tovey, and C R Howard
February 2012, Vaccine,
R Ishak, and D G Tovey, and C R Howard
January 1953, The American journal of pathology,
R Ishak, and D G Tovey, and C R Howard
January 1998, Vaccine,
R Ishak, and D G Tovey, and C R Howard
January 1953, Texas reports on biology and medicine,
R Ishak, and D G Tovey, and C R Howard
September 2009, Immunology,
R Ishak, and D G Tovey, and C R Howard
December 1998, Biologicals : journal of the International Association of Biological Standardization,
Copied contents to your clipboard!