Muscarinic cholinergic receptor subtypes in hippocampus in human cognitive disorders. 1988

C J Smith, and E K Perry, and R H Perry, and J M Candy, and M Johnson, and J R Bonham, and D J Dick, and A Fairbairn, and G Blessed, and N J Birdsall
Department of Neuropathology Research, Newcastle General Hospital, Newcastle upon Tyne, U.K.

Total muscarinic receptor levels, the levels of the subtypes exhibiting high and low affinity for pirenzepine, and the high- and low-affinity agonist states of the receptor were investigated in hippocampal tissue obtained at autopsy from mentally normal individuals and the following pathological groups: Alzheimer's disease, Parkinson's disease, Down's syndrome, alcoholic dementia, Huntington's chorea, and motor-neurone disease. A moderate decrease in the density of both high-affinity pirenzepine and high-affinity agonist subtypes was found in Alzheimer's disease, whereas a trend towards an increase in the overall muscarinic receptor density was apparent in the parkinsonian patients without dementia, mainly due to an increase in the low-affinity agonist state; the differences between the Alzheimer's disease and nondemented parkinsonian cases were highly significant. As previously reported, the levels of both choline acetyltransferase and acetylcholinesterase were markedly reduced in both Alzheimer's disease and Parkinson's disease--with a greater loss of both enzymes in the demented subgroup of parkinsonian patients. Activities of the cholinergic enzymes were also extensively reduced in Down's syndrome, accompanied by a loss of high-affinity pirenzepine binding. There were no significant receptor or enzyme alterations in the other groups studied. These observations suggest that in the human brain, extensive degeneration of cholinergic axons to the hippocampus, as indicated by a loss of cholinergic enzymes, is not necessarily accompanied by extensive muscarinic receptor abnormalities (as might be expected if a major subpopulation were presynaptic). Moreover, the opposite changes in muscarinic binding in Parkinson's and Alzheimer's diseases may be related to the greater severity of dementia in the latter disease.

UI MeSH Term Description Entries
D010276 Parasympatholytics Agents that inhibit the actions of the parasympathetic nervous system. The major group of drugs used therapeutically for this purpose is the MUSCARINIC ANTAGONISTS. Antispasmodic,Antispasmodic Agent,Antispasmodic Drug,Antispasmodics,Parasympathetic-Blocking Agent,Parasympathetic-Blocking Agents,Parasympatholytic,Parasympatholytic Agent,Parasympatholytic Drug,Spasmolytic,Spasmolytics,Antispasmodic Agents,Antispasmodic Drugs,Antispasmodic Effect,Antispasmodic Effects,Parasympatholytic Agents,Parasympatholytic Drugs,Parasympatholytic Effect,Parasympatholytic Effects,Agent, Antispasmodic,Agent, Parasympathetic-Blocking,Agent, Parasympatholytic,Agents, Antispasmodic,Agents, Parasympathetic-Blocking,Agents, Parasympatholytic,Drug, Antispasmodic,Drug, Parasympatholytic,Drugs, Antispasmodic,Drugs, Parasympatholytic,Effect, Antispasmodic,Effect, Parasympatholytic,Effects, Antispasmodic,Effects, Parasympatholytic,Parasympathetic Blocking Agent,Parasympathetic Blocking Agents
D010300 Parkinson Disease A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75) Idiopathic Parkinson Disease,Lewy Body Parkinson Disease,Paralysis Agitans,Primary Parkinsonism,Idiopathic Parkinson's Disease,Lewy Body Parkinson's Disease,Parkinson Disease, Idiopathic,Parkinson's Disease,Parkinson's Disease, Idiopathic,Parkinson's Disease, Lewy Body,Parkinsonism, Primary
D010890 Pirenzepine An antimuscarinic agent that inhibits gastric secretion at lower doses than are required to affect gastrointestinal motility, salivary, central nervous system, cardiovascular, ocular, and urinary function. It promotes the healing of duodenal ulcers and due to its cytoprotective action is beneficial in the prevention of duodenal ulcer recurrence. It also potentiates the effect of other antiulcer agents such as CIMETIDINE and RANITIDINE. It is generally well tolerated by patients. Gastrotsepin,Gastrozepin,L-S 519,LS-519,Piren-Basan,Pirenzepin,Pirenzepin Von Ct,Pirenzepin-Ratiopharm,Pirenzepine Dihydrochloride,Pyrenzepine,Ulcoprotect,Ulgescum,Dihydrochloride, Pirenzepine,LS 519,LS519,Piren Basan,Pirenzepin Ratiopharm,Von Ct, Pirenzepin
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D003072 Cognition Disorders Disorders characterized by disturbances in mental processes related to learning, thinking, reasoning, and judgment. Overinclusion,Disorder, Cognition,Disorders, Cognition
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine

Related Publications

C J Smith, and E K Perry, and R H Perry, and J M Candy, and M Johnson, and J R Bonham, and D J Dick, and A Fairbairn, and G Blessed, and N J Birdsall
March 2002, Mechanisms of ageing and development,
C J Smith, and E K Perry, and R H Perry, and J M Candy, and M Johnson, and J R Bonham, and D J Dick, and A Fairbairn, and G Blessed, and N J Birdsall
January 1997, Neuroscience letters,
C J Smith, and E K Perry, and R H Perry, and J M Candy, and M Johnson, and J R Bonham, and D J Dick, and A Fairbairn, and G Blessed, and N J Birdsall
April 1996, Neuroscience letters,
C J Smith, and E K Perry, and R H Perry, and J M Candy, and M Johnson, and J R Bonham, and D J Dick, and A Fairbairn, and G Blessed, and N J Birdsall
May 1998, Neuroscience letters,
C J Smith, and E K Perry, and R H Perry, and J M Candy, and M Johnson, and J R Bonham, and D J Dick, and A Fairbairn, and G Blessed, and N J Birdsall
February 1988, The Journal of pharmacology and experimental therapeutics,
C J Smith, and E K Perry, and R H Perry, and J M Candy, and M Johnson, and J R Bonham, and D J Dick, and A Fairbairn, and G Blessed, and N J Birdsall
April 1995, Brain research,
C J Smith, and E K Perry, and R H Perry, and J M Candy, and M Johnson, and J R Bonham, and D J Dick, and A Fairbairn, and G Blessed, and N J Birdsall
February 1994, The American journal of physiology,
C J Smith, and E K Perry, and R H Perry, and J M Candy, and M Johnson, and J R Bonham, and D J Dick, and A Fairbairn, and G Blessed, and N J Birdsall
December 1987, Journal of the neurological sciences,
C J Smith, and E K Perry, and R H Perry, and J M Candy, and M Johnson, and J R Bonham, and D J Dick, and A Fairbairn, and G Blessed, and N J Birdsall
January 1986, Brain research,
C J Smith, and E K Perry, and R H Perry, and J M Candy, and M Johnson, and J R Bonham, and D J Dick, and A Fairbairn, and G Blessed, and N J Birdsall
January 1998, Journal of receptor and signal transduction research,
Copied contents to your clipboard!