Deposition and transfer of axonally transported phospholipids in rat sciatic nerve. 1988

A D Toews, and R Armstrong, and R Ray, and R M Gould, and P Morell
Department of Biochemistry and Nutrition, University of North Carolina, Chapel Hill 27514.

Radioactive glycerol, ethanolamine, or choline injected into the vicinity of the cell bodies of rat sciatic nerve sensory fibers is incorporated into phospholipid. Some newly synthesized ethanolamine and choline phosphoglycerides are subsequently committed to transport down the sciatic nerve axons at a rate of several hundred millimeters per day. Most labeled choline phosphoglycerides move uniformly down the axons; in contrast, the crest of moving ethanolamine phosphoglycerides is continually attenuated. These data, as well as differences in the clearance of these phospholipids distal to a nerve ligature, suggest that various classes of labeled phospholipids are differentially unloaded from the transport vector (possibly by exchange with unlabeled lipid in stationary axonal structures) during movement down the axons. The extent of unloading appears to be defined by the base moiety; both diacyl and plasmalogen species of ethanolamine phosphoglycerides exchange extensively with stationary axonal lipids, while most choline phosphoglycerides continue down the axons. Autoradiographic studies with 3H-choline and 3H-ethanolamine demonstrated that most unloaded phospholipid is initially deposited in axonal structures; some of this unloaded lipid is subsequently transferred to the axon/myelin interface (axolemma?) and then to myelin. Although transported ethanolamine phosphoglycerides exchange more extensively with lipids in stationary axonal structures than do choline phosphoglycerides, at early times more label from 3H-choline is found in myelin. A model to resolve this seeming discrepancy is proposed, wherein a differential topographic localization of phospholipid classes in the membrane of the transport vector allows for a preferential extensive exchange of transported ethanolamine phosphoglycerides with lipids in stationary axonal structures, while choline phosphoglycerides become available for rapid transfer to myelin by a process involving vesicle fusion with axolemma.

UI MeSH Term Description Entries
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012584 Sciatic Nerve A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE. Nerve, Sciatic,Nerves, Sciatic,Sciatic Nerves
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A D Toews, and R Armstrong, and R Ray, and R M Gould, and P Morell
April 1989, Journal of neurochemistry,
A D Toews, and R Armstrong, and R Ray, and R M Gould, and P Morell
May 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A D Toews, and R Armstrong, and R Ray, and R M Gould, and P Morell
November 1981, Journal of neurochemistry,
A D Toews, and R Armstrong, and R Ray, and R M Gould, and P Morell
February 1977, Journal of neurochemistry,
A D Toews, and R Armstrong, and R Ray, and R M Gould, and P Morell
November 1978, Brain research,
A D Toews, and R Armstrong, and R Ray, and R M Gould, and P Morell
February 1982, Neurochemical research,
A D Toews, and R Armstrong, and R Ray, and R M Gould, and P Morell
April 1981, Brain research,
A D Toews, and R Armstrong, and R Ray, and R M Gould, and P Morell
April 1988, Journal of neurobiology,
A D Toews, and R Armstrong, and R Ray, and R M Gould, and P Morell
April 1979, Brain research,
A D Toews, and R Armstrong, and R Ray, and R M Gould, and P Morell
July 1991, Brain research,
Copied contents to your clipboard!