Collagen-Induced Temporomandibular Joint Arthritis Juvenile Rat Animal Model. 2021

Jacqueline Crossman, and Hollis Lai, and Marianna Kulka, and Nadr Jomha, and Patrick Flood, and Tarek El-Bialy
Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.

Juvenile idiopathic arthritis can affect the temporomandibular joint (TMJ) can cause growth disturbances of the lower jaw (mandible). The collagen-induced arthritis (CIA) juvenile rat model may be an appropriate model for studying how juvenile arthritis affects this joint during growth. However, studies using this animal model to investigate TMJ arthritis are limited. To validate an animal model for studying TMJ arthritis in growing rats, our study aimed to investigate the changes in mandibular growth and expression of proteins and cytokines in the mandibular condyle of CIA juvenile rat TMJs. A total of 27 male Wistar rats (3 weeks old) were scanned with microcomputed tomography (MicroCT) and divided into three groups (n = 9); CIA was induced in each TMJ in the CIA group, the Saline group received saline injections (sham injections) into their TMJs, and the Healthy group remained untreated (no TMJ injections) as negative controls. After 4 weeks, our results show that mandibular growth was significantly reduced in the CIA group compared with the Saline group (p < 0.01). There was no difference in mandibular growth between the two control groups (Saline and Healthy). Inflamed synovial tissue, cartilage invaginations, and lipid accumulation were observed in the CIA TMJs. Toluidine blue staining revealed decreased proteoglycan production in the CIA cartilage. In addition, immunohistochemistry revealed that type II collagen expression decreased, interleukin-1β expression increased, and matrix metalloproteinase-13 expression increased in the CIA TMJs in comparison with the two control groups (Saline and Healthy). Immunostaining of tumor necrosis factor-α (TNF-α) was quantified and we showed that TNF-α expression was significantly greater in the CIA cartilage compared with both control groups (p < 0.05), and there was no difference in TNF-α expression between the Saline and Healthy groups. This CIA juvenile rat model of TMJ juvenile arthritis shows that CIA reduced mandibular growth and induced degenerative changes in TMJ condylar cartilage. This new information will help to understand the pathogenesis involved in CIA in juvenile rat TMJs for this animal model to be used in research investigating new therapeutics to treat TMJ juvenile arthritis. Impact statement In this study, the effects of collagen-induced arthritis (CIA) on the temporomandibular joint (TMJ) using a juvenile rat model were investigated. Our results showed that local injection of CIA in the TMJ significantly reduced mandibular growth and caused degenerative changes in condylar cartilage. This information helps to validate this animal model for studying the effect of arthritis in TMJs in growing rats. This model has the potential to be used in future studies to evaluate possible therapies for TMJ arthritis.

UI MeSH Term Description Entries
D008297 Male Males
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001169 Arthritis, Experimental ARTHRITIS that is induced in experimental animals. Immunological methods and infectious agents can be used to develop experimental arthritis models. These methods include injections of stimulators of the immune response, such as an adjuvant (ADJUVANTS, IMMUNOLOGIC) or COLLAGEN. Adjuvant Arthritis,Arthritis, Adjuvant-Induced,Arthritis, Collagen-Induced,Arthritis, Adjuvant,Collagen Arthritis,Arthritides, Collagen,Arthritis, Collagen,Collagen Arthritides,Collagen-Induced Arthritides,Collagen-Induced Arthritis
D013704 Temporomandibular Joint An articulation between the condyle of the mandible and the articular tubercle of the temporal bone. TMJ,Joint, Temporomandibular,Joints, Temporomandibular,Temporomandibular Joints
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D055114 X-Ray Microtomography X-RAY COMPUTERIZED TOMOGRAPHY with resolution in the micrometer range. MicroCT,Microcomputed Tomography,X-Ray Micro-CAT Scans,X-Ray Micro-CT,X-Ray Micro-CT Scans,X-Ray Micro-Computed Tomography,X-Ray Microcomputed Tomography,X-ray MicroCT,Xray Micro-CT,Xray MicroCT,Micro-CAT Scan, X-Ray,Micro-CAT Scans, X-Ray,Micro-CT Scan, X-Ray,Micro-CT Scans, X-Ray,Micro-CT, X-Ray,Micro-CT, Xray,Micro-CTs, X-Ray,Micro-CTs, Xray,Micro-Computed Tomography, X-Ray,MicroCT, X-ray,MicroCT, Xray,MicroCTs,MicroCTs, X-ray,MicroCTs, Xray,Microcomputed Tomography, X-Ray,Microtomography, X-Ray,Scan, X-Ray Micro-CAT,Scan, X-Ray Micro-CT,Scans, X-Ray Micro-CAT,Scans, X-Ray Micro-CT,Tomography, Microcomputed,Tomography, X-Ray Micro-Computed,Tomography, X-Ray Microcomputed,X Ray Micro CAT Scans,X Ray Micro CT,X Ray Micro CT Scans,X Ray Micro Computed Tomography,X Ray Microcomputed Tomography,X Ray Microtomography,X ray MicroCT,X-Ray Micro-CAT Scan,X-Ray Micro-CT Scan,X-Ray Micro-CTs,X-ray MicroCTs,Xray Micro CT,Xray Micro-CTs,Xray MicroCTs
D024043 Collagen Type II A fibrillar collagen found predominantly in CARTILAGE and vitreous humor. It consists of three identical alpha1(II) chains. Collagen Type II, alpha1 Chain,Collagen Type II, alpha1 Subunit,Collagen alpha1(II),Procollagen Type II,Type II Collagen,Type II Procollagen,Collagen, Type II,Procollagen, Type II

Related Publications

Jacqueline Crossman, and Hollis Lai, and Marianna Kulka, and Nadr Jomha, and Patrick Flood, and Tarek El-Bialy
August 1999, Journal of dental research,
Jacqueline Crossman, and Hollis Lai, and Marianna Kulka, and Nadr Jomha, and Patrick Flood, and Tarek El-Bialy
December 1995, Journal of dental research,
Jacqueline Crossman, and Hollis Lai, and Marianna Kulka, and Nadr Jomha, and Patrick Flood, and Tarek El-Bialy
September 2006, Current opinion in rheumatology,
Jacqueline Crossman, and Hollis Lai, and Marianna Kulka, and Nadr Jomha, and Patrick Flood, and Tarek El-Bialy
November 2021, Rheumatic diseases clinics of North America,
Jacqueline Crossman, and Hollis Lai, and Marianna Kulka, and Nadr Jomha, and Patrick Flood, and Tarek El-Bialy
April 2018, Pediatric rheumatology online journal,
Jacqueline Crossman, and Hollis Lai, and Marianna Kulka, and Nadr Jomha, and Patrick Flood, and Tarek El-Bialy
January 1997, Life sciences,
Jacqueline Crossman, and Hollis Lai, and Marianna Kulka, and Nadr Jomha, and Patrick Flood, and Tarek El-Bialy
June 2020, The Journal of rheumatology,
Jacqueline Crossman, and Hollis Lai, and Marianna Kulka, and Nadr Jomha, and Patrick Flood, and Tarek El-Bialy
June 1967, Archives of pathology,
Jacqueline Crossman, and Hollis Lai, and Marianna Kulka, and Nadr Jomha, and Patrick Flood, and Tarek El-Bialy
June 2011, European journal of paediatric dentistry,
Jacqueline Crossman, and Hollis Lai, and Marianna Kulka, and Nadr Jomha, and Patrick Flood, and Tarek El-Bialy
September 2005, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons,
Copied contents to your clipboard!