Granisetron, a selective 5-HT3 antagonist, reduces L-3,4-dihydroxyphenylalanine-induced abnormal involuntary movements in the 6-hydroxydopamine-lesioned rat. 2021

Cynthia Kwan, and Imane Frouni, and Dominique Bédard, and Adjia Hamadjida, and Philippe Huot
Neurodegenerative Disease Group, Montreal Neurological Institute.

Administration of L-3,4-dihydroxyphenylalanine (L-DOPA) provides Parkinson's disease patients with effective symptomatic relief. However, long-term L-DOPA therapy is often marred by complications such as dyskinesia. We have previously demonstrated that serotonin type 3 (5-HT3) receptor blockade with the clinically available and highly selective antagonist ondansetron alleviates dyskinesia in the 6-hydroxydopamine (6-OHDA)-lesioned rat. Here, we sought to explore the antidyskinetic efficacy of granisetron, another clinically available 5-HT3 receptor antagonist. Rats were rendered hemi-parkinsonian by 6-OHDA injection in the medial forebrain bundle. Following induction of stable abnormal involuntary movements (AIMs), granisetron (0.0001, 0.001, 0.01, 0.1 and 1 mg/kg) or vehicle was acutely administered in combination with L-DOPA and the severity of AIMs, both duration and amplitude, was determined. We also assessed the effect of granisetron on L-DOPA antiparkinsonian action by performing the cylinder test. Adding granisetron (0.0001, 0.001, 0.01, 0.1 and 1 mg/kg) to L-DOPA resulted in a significant reduction of AIMs duration and amplitude, with certain parameters being reduced by as much as 38 and 45% (P < 0.05 and P < 0.001, respectively). The antidyskinetic effect of granisetron was not accompanied by a reduction of L-DOPA antiparkinsonian action. These results suggest that 5-HT3 blockade may reduce L-DOPA-induced dyskinesia without impairing the therapeutic efficacy of L-DOPA. However, a U-shaped dose-response curve obtained with certain parameters may limit the therapeutic potential of this strategy and require further investigation.

UI MeSH Term Description Entries
D007980 Levodopa The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. L-Dopa,3-Hydroxy-L-tyrosine,Dopaflex,Dopar,L-3,4-Dihydroxyphenylalanine,Larodopa,Levopa,3 Hydroxy L tyrosine,L 3,4 Dihydroxyphenylalanine,L Dopa
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004409 Dyskinesia, Drug-Induced Abnormal movements, including HYPERKINESIS; HYPOKINESIA; TREMOR; and DYSTONIA, associated with the use of certain medications or drugs. Muscles of the face, trunk, neck, and extremities are most commonly affected. Tardive dyskinesia refers to abnormal hyperkinetic movements of the muscles of the face, tongue, and neck associated with the use of neuroleptic agents (see ANTIPSYCHOTIC AGENTS). (Adams et al., Principles of Neurology, 6th ed, p1199) Dyskinesia, Medication-Induced,Medication-Induced Dyskinesia,Drug-Induced Dyskinesia,Drug-Induced Dyskinesias,Dyskinesia, Drug Induced,Dyskinesia, Medication Induced,Dyskinesias, Drug-Induced,Dyskinesias, Medication-Induced,Medication Induced Dyskinesia,Medication-Induced Dyskinesias
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000978 Antiparkinson Agents Agents used in the treatment of Parkinson's disease. The most commonly used drugs act on the dopaminergic system in the striatum and basal ganglia or are centrally acting muscarinic antagonists. Antiparkinson Drugs,Antiparkinsonian Agents,Antiparkinsonians,Agents, Antiparkinson,Agents, Antiparkinsonian,Drugs, Antiparkinson
D016627 Oxidopamine A neurotransmitter analogue that depletes noradrenergic stores in nerve endings and induces a reduction of dopamine levels in the brain. Its mechanism of action is related to the production of cytolytic free-radicals. 6-Hydroxydopamine,6-OHDA,Oxidopamine Hydrobromide,Oxidopamine Hydrochloride,6 Hydroxydopamine,Hydrobromide, Oxidopamine,Hydrochloride, Oxidopamine
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D058831 Serotonin 5-HT3 Receptor Antagonists Drugs that bind to but do not activate SEROTONIN 5-HT3 RECEPTORS, thereby blocking the actions of SEROTONIN or SEROTONIN 5-HT3 RECEPTOR AGONISTS. 5-HT3 Antagonist,5-HT3 Antagonists,5 HT3 Antagonist,5 HT3 Antagonists,Antagonist, 5-HT3,Antagonists, 5-HT3,Serotonin 5 HT3 Receptor Antagonists

Related Publications

Cynthia Kwan, and Imane Frouni, and Dominique Bédard, and Adjia Hamadjida, and Philippe Huot
February 2015, Behavioural pharmacology,
Cynthia Kwan, and Imane Frouni, and Dominique Bédard, and Adjia Hamadjida, and Philippe Huot
April 2012, Behavioural pharmacology,
Cynthia Kwan, and Imane Frouni, and Dominique Bédard, and Adjia Hamadjida, and Philippe Huot
March 2009, Biological psychiatry,
Cynthia Kwan, and Imane Frouni, and Dominique Bédard, and Adjia Hamadjida, and Philippe Huot
January 1973, Brain research,
Cynthia Kwan, and Imane Frouni, and Dominique Bédard, and Adjia Hamadjida, and Philippe Huot
July 2018, Behavioural brain research,
Cynthia Kwan, and Imane Frouni, and Dominique Bédard, and Adjia Hamadjida, and Philippe Huot
December 2010, Brain research,
Cynthia Kwan, and Imane Frouni, and Dominique Bédard, and Adjia Hamadjida, and Philippe Huot
January 2004, Neuro-degenerative diseases,
Cynthia Kwan, and Imane Frouni, and Dominique Bédard, and Adjia Hamadjida, and Philippe Huot
October 2014, European journal of pharmacology,
Copied contents to your clipboard!