Cefoperazone/sulbactam: New composites against multiresistant gram negative bacteria? 2021

Yee-Huang Ku, and Wen-Liang Yu
Division of Infectious Disease, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan.

Sulbactam, a class A β-lactamase inhibitor, added to cefoperazone either at a fixed 8 mg/L level of sulbactam or at a level of fixed cefoperazone: sulbactam ratio (2:1) would constitute a combination form of cefoperazone/sulbactam, which has better activities against Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii than cefoperazone alone. Cefoperazone/sulbactam (1:1 or 1:2) has greater in-vitro activity against most multidrug-resistant organisms (ESBL- and AmpC-producing Enterobacteriaceae and carbapenem-resistant A. baumannii except for carbapenem-resistant P. aeruginosa) than a 2:1 ratio. However, increased sulbactam concentration may induce AmpC production. Besides, sulbactam concentration might not be readily achievable in serum if the susceptibility rates were defined by the breakpoints of higher sulbactam composites, such as ≤16/16 (1:1) or 16/32 (1:2) mg/L. Carbapenemases (KPC-, OXA-type enzymes and metallo-β-lactamases) can't be inhibited by sulbactam. Some in-vitro studies showed that increasing sulbactam composites of cefoperazone/sulbactam had no effect on carbapenem-resistant P. aeruginosa, suggesting the presence of carbapenemases or AmpC overproduction that could not be overcome by increasing sulbactam levels to recover cefoperazone activity. Sulbactam alone has good intrinsic activity against carbapenem-resistant Acinetobacter strains sometimes even in the presence of carbapenemase genes, suggesting unsteady levels of carbapenemases. In conclusion, appropriate composites of cefoperazone and β-lactamase inhibitor sulbactam may expand the clinical use if the pharmacokinetic optimization could be achieved in the human serum.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D002438 Cefoperazone Semisynthetic broad-spectrum cephalosporin with a tetrazolyl moiety that is resistant to beta-lactamase. It may be used to treat Pseudomonas infections. Cefobid,Cefoperazon,Cefoperazone Sodium,Cefoperazone Sodium Salt,Céfobis,T-1551,T1551,Salt, Cefoperazone Sodium,Sodium Salt, Cefoperazone,Sodium, Cefoperazone,T 1551
D004338 Drug Combinations Single preparations containing two or more active agents, for the purpose of their concurrent administration as a fixed dose mixture. Drug Combination,Combination, Drug,Combinations, Drug
D006090 Gram-Negative Bacteria Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method. Gram Negative Bacteria
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001618 beta-Lactamases Enzymes found in many bacteria which catalyze the hydrolysis of the amide bond in the beta-lactam ring. Well known antibiotics destroyed by these enzymes are penicillins and cephalosporins. beta-Lactamase,beta Lactamase,beta Lactamases
D013407 Sulbactam A beta-lactamase inhibitor with very weak antibacterial action. The compound prevents antibiotic destruction of beta-lactam antibiotics by inhibiting beta-lactamases, thus extending their spectrum activity. Combinations of sulbactam with beta-lactam antibiotics have been used successfully for the therapy of infections caused by organisms resistant to the antibiotic alone. Bétamaze,CP-45899,Combactam,Penicillanic Acid Sulfone,Sulbactam Sodium,CP 45899,CP45899,Sodium, Sulbactam,Sulfone, Penicillanic Acid
D024901 Drug Resistance, Multiple, Bacterial The ability of bacteria to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Drug Resistance, Extensive, Bacterial,Drug Resistance, Extensively, Bacterial,Extensive Antibacterial Drug Resistance,Extensively Antibacterial Drug Resistance,Multidrug Resistance, Bacterial,Multiple Antibacterial Drug Resistance,Bacterial Multidrug Resistance,Bacterial Multidrug Resistances,Resistance, Bacterial Multidrug

Related Publications

Yee-Huang Ku, and Wen-Liang Yu
December 2020, Journal of global antimicrobial resistance,
Yee-Huang Ku, and Wen-Liang Yu
March 2012, Nepal Medical College journal : NMCJ,
Yee-Huang Ku, and Wen-Liang Yu
January 2018, Infection and drug resistance,
Yee-Huang Ku, and Wen-Liang Yu
July 1990, Mikrobiyoloji bulteni,
Yee-Huang Ku, and Wen-Liang Yu
February 2020, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases,
Yee-Huang Ku, and Wen-Liang Yu
April 1974, La Nouvelle presse medicale,
Yee-Huang Ku, and Wen-Liang Yu
January 2001, Pharmazie in unserer Zeit,
Yee-Huang Ku, and Wen-Liang Yu
August 2003, Antimicrobial agents and chemotherapy,
Yee-Huang Ku, and Wen-Liang Yu
January 1990, Diagnostic microbiology and infectious disease,
Copied contents to your clipboard!