| D007074 |
Immunoglobulin G |
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. |
Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin |
|
| D007116 |
Immunization, Passive |
Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER). |
Convalescent Plasma Therapy,Immunoglobulin Therapy,Immunotherapy, Passive,Normal Serum Globulin Therapy,Passive Antibody Transfer,Passive Transfer of Immunity,Serotherapy,Passive Immunotherapy,Therapy, Immunoglobulin,Antibody Transfer, Passive,Passive Immunization,Therapy, Convalescent Plasma,Transfer, Passive Antibody |
|
| D009157 |
Myasthenia Gravis |
A disorder of neuromuscular transmission characterized by fatigable weakness of cranial and skeletal muscles with elevated titers of ACETYLCHOLINE RECEPTORS or muscle-specific receptor tyrosine kinase (MuSK) autoantibodies. Clinical manifestations may include ocular muscle weakness (fluctuating, asymmetric, external ophthalmoplegia; diplopia; ptosis; and weakness of eye closure) and extraocular fatigable weakness of facial, bulbar, respiratory, and proximal limb muscles. The disease may remain limited to the ocular muscles (ocular myasthenia). THYMOMA is commonly associated with this condition. |
Anti-MuSK Myasthenia Gravis,MuSK MG,MuSK Myasthenia Gravis,Muscle-Specific Receptor Tyrosine Kinase Myasthenia Gravis,Muscle-Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis,Myasthenia Gravis, Generalized,Myasthenia Gravis, Ocular,Anti MuSK Myasthenia Gravis,Generalized Myasthenia Gravis,Muscle Specific Receptor Tyrosine Kinase Myasthenia Gravis,Muscle Specific Tyrosine Kinase Antibody Positive Myasthenia Gravis,Myasthenia Gravis, Anti-MuSK,Myasthenia Gravis, MuSK,Ocular Myasthenia Gravis |
|
| D011817 |
Rabbits |
A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. |
Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus |
|
| D011950 |
Receptors, Cholinergic |
Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. |
ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive |
|
| D002038 |
Bungarotoxins |
Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. |
alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin |
|
| D004195 |
Disease Models, Animal |
Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. |
Animal Disease Model,Animal Disease Models,Disease Model, Animal |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000109 |
Acetylcholine |
A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. |
2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|