Cytokine-Mediated Regulation of Innate Lymphoid Cell Plasticity in Gut Mucosal Immunity. 2020

Carlo De Salvo, and Kristine-Ann Buela, and Theresa T Pizarro
Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States.

Mucosal barriers are active sites that encounter a bombardment of antigenic stimuli derived from both the commensal flora and a variety of pathogens, as well as from environmental insults. As such, the ability to mount appropriate innate immune responses is an important first line of defense that confers protection to the host. Central to innate immunity are innate lymphoid cells (ILCs), which were first described a decade ago, and represent a family of heterogeneous cells driven by specific transcription factors and exhibit distinct cytokine profiles that are shared with their CD4+ T-helper cell counterparts. ILCs are particularly enriched at mucosal surfaces, and the tissue microenvironment and cytokine milieu in which ILCs reside are critical factors that drive the behavior and overall function of these cells. In fact, ILCs situated at mucosal barriers must be able to temper their response to a constant exposure of environmental antigens, but also promptly react to pathogens or signals that are potentially harmful to the host. In this context, the ability of ILCs to readily transdifferentiate in response to their dynamic surroundings has become a vigorous area of research, and defining specific mechanism(s) of ILC plasticity is at the advent of discovery. This review will summarize what is currently known regarding the network of cytokines and regulatory elements that enable ILCs to readily transform, based on the range of diverse signals and signal gradients they encounter that lead to either protective or pathogenic function(s), with focus on the gut mucosal immune system.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000066670 Cell Plasticity The ability of a cell to change its PHENOTYPE in response to changes in the environment. Cellular Plasticity,Cell Plasticities,Cellular Plasticities,Plasticities, Cell,Plasticities, Cellular,Plasticity, Cell,Plasticity, Cellular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D018928 Immunity, Mucosal Nonsusceptibility to the pathogenic effects of foreign microorganisms or antigenic substances as a result of antibody secretions of the mucous membranes. Mucosal epithelia in the gastrointestinal, respiratory, and reproductive tracts produce a form of IgA (IMMUNOGLOBULIN A, SECRETORY) that serves to protect these ports of entry into the body. Immune Response, Mucosal,Mucosal Immunity,Immune Responses, Mucosal,Mucosal Immune Response,Mucosal Immune Responses

Related Publications

Carlo De Salvo, and Kristine-Ann Buela, and Theresa T Pizarro
February 2023, Microorganisms,
Carlo De Salvo, and Kristine-Ann Buela, and Theresa T Pizarro
January 2020, Gut microbes,
Carlo De Salvo, and Kristine-Ann Buela, and Theresa T Pizarro
January 2012, Annals of vascular diseases,
Carlo De Salvo, and Kristine-Ann Buela, and Theresa T Pizarro
January 2019, Frontiers in immunology,
Carlo De Salvo, and Kristine-Ann Buela, and Theresa T Pizarro
October 2016, Immunology,
Carlo De Salvo, and Kristine-Ann Buela, and Theresa T Pizarro
November 2014, Cytokine,
Carlo De Salvo, and Kristine-Ann Buela, and Theresa T Pizarro
January 2023, Frontiers in immunology,
Carlo De Salvo, and Kristine-Ann Buela, and Theresa T Pizarro
January 2022, Advances in experimental medicine and biology,
Carlo De Salvo, and Kristine-Ann Buela, and Theresa T Pizarro
October 1995, Immunology and cell biology,
Carlo De Salvo, and Kristine-Ann Buela, and Theresa T Pizarro
February 2021, Current opinion in immunology,
Copied contents to your clipboard!