Trajectories of regenerating retinal axons in the goldfish tectum: I. A comparison of normal and regenerated axons at late regeneration stages. 1988

C A Stuermer
Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, Federal Republic of Germany.

To visualize and compare the intratectal path of normal and regenerated retinal axons, HRP was applied to localized sites in the dorsotemporal and dorsonasal retina in normal goldfish and in goldfish at 3-12 months after optic nerve section. The anterogradely labeled axons were traced in tectal whole mounts. In normal animals the axons were confined to the appropriate ventral hemitectum. Therein they ran in very orderly routes (Stuermer and Easter: J. Neurosci. 4:1045-1051, '84) and terminated in regions retinotopic to the labeled ganglion cells in the retina. The terminal arbors of dorsotemporal axons resided in the ventrorostral tectum and those of dorsonasal axons in the ventrocaudal tectum. In regenerating animals the terminal arbors also resided at retinotopic regions, where they sometimes formed two separate clusters. In contrast to normal axons, the regenerating ones traveled in abnormal routes through the appropriate and inappropriate hemitectum. From various ectopic positions, they underwent course corrections to redirect their routes toward the retinotopic target region. In their approach toward their target sites, dorsotemporal and dorsonasal axons behaved differently in that the vast majority of dorsotemporal axons coursed over the more rostral tectum whereas dorsonasal axons progressed into the caudal tectal half. This differential behavior of regenerating dorsonasal and dorsotemporal axons was substantiated by a quantitative evaluation of axon numbers and orientations.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003530 Cyprinidae A family of freshwater fish comprising the minnows or CARPS. Barbels,Chub,Dace,Minnows,Roach (Fish),Shiner,Tench,Tinca,Barbus,Rutilus rutilus,Tinca tinca,Chubs,Shiners,Tinca tincas,tinca, Tinca
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic

Related Publications

C A Stuermer
July 1976, The Journal of comparative neurology,
C A Stuermer
January 1997, Experimental neurology,
C A Stuermer
May 1984, The Journal of comparative neurology,
C A Stuermer
March 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C A Stuermer
April 1998, Brain research,
C A Stuermer
March 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C A Stuermer
July 1984, The Journal of comparative neurology,
Copied contents to your clipboard!