Effect of angiotensin II on Ca2+ kinetics and contraction in cultured rat glomerular mesangial cells. 1988

K Takeda, and H Meyer-Lehnert, and J K Kim, and R W Schrier
Department of Medicine, University of Colorado School of Medicine, Denver 80262.

This in vitro study was undertaken to determine the changes in Ca2+ kinetics and cell shape of cultured putative glomerular mesangial cells in the rat in response to angiotensin II (ANG II). Intracellular Ca2+ ([Ca2+]i) was measured using quin 2. ANG II-stimulated Ca2+ efflux was also determined. ANG II induced rapid concentration-dependent increases in [Ca2+]i and Ca2+ efflux. ANG II also induced contraction of mesangial cells as assessed by alterations in cell shape. Even in Ca2+-free medium, ANG II increased [Ca2+]i and Ca2+ efflux, but to a lesser extent. Under this condition, contraction of mesangial cells induced by ANG II was also observed. Readdition of extracellular Ca2+ after the ANG II-induced increase in [Ca2+]i caused a second and slower [Ca2+]i increase. High potassium (50 mM) induced a change of [Ca2+]i, but to a lesser extent compared with the ANG II-induced change. The Ca2+ channel blocker verapamil (5 x 10(-5) M) partially inhibited ANG II-induced Ca2+ influx but totally blocked the increase in [Ca2+]i induced by high potassium. Verapamil did not inhibit ANG II-stimulated Ca2+ efflux or the change in cell shape. Dantrolene (10(-4) M), a blocker of Ca2+ release from endoplasmic reticulum, inhibited ANG II-stimulated Ca2+ efflux and change in cell shape. These results indicate that ANG II rapidly increases [Ca2+]i in cultured rat mesangial cells, in part by mobilizing Ca2+ from dantrolene-sensitive intracellular pools and in part through activation of receptor-operated and voltage-dependent Ca2+ channels. The [Ca2+]i mobilization, however, seems to be the primary modulator of initial glomerular mesangial cell contraction.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003620 Dantrolene Skeletal muscle relaxant that acts by interfering with excitation-contraction coupling in the muscle fiber. It is used in spasticity and other neuromuscular abnormalities. Although the mechanism of action is probably not central, dantrolene is usually grouped with the central muscle relaxants. Dantrium,Dantrolene Sodium,Sodium, Dantrolene
D005920 Glomerular Mesangium The thin membranous structure supporting the adjoining glomerular capillaries. It is composed of GLOMERULAR MESANGIAL CELLS and their EXTRACELLULAR MATRIX. Mesangium, Glomerular,Mesangial Extracellular Matrix,Extracellular Matrices, Mesangial,Extracellular Matrix, Mesangial,Glomerular Mesangiums,Matrices, Mesangial Extracellular,Matrix, Mesangial Extracellular,Mesangial Extracellular Matrices,Mesangiums, Glomerular
D000634 Aminoquinolines Quinolines substituted in any position by one or more amino groups.
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012504 Saralasin An octapeptide analog of angiotensin II (bovine) with amino acids 1 and 8 replaced with sarcosine and alanine, respectively. It is a highly specific competitive inhibitor of angiotensin II that is used in the diagnosis of HYPERTENSION. 1-Sar-8-Ala Angiotensin II,1-Sarcosine-8-Alanine Angiotensin II,(Sar(1),Ala(8))ANGII,(Sar1,Val5,Ala8)Angiotensin II,Angiotensin II, Sar(1)-Ala(8)-,Angiotensin II, Sarcosyl(1)-Alanine(8)-,Sar-Arg-Val-Tyr-Val-His-Pro-Ala,Saralasin Acetate,Saralasin Acetate, Anhydrous,Saralasin Acetate, Hydrated,1 Sar 8 Ala Angiotensin II,1 Sarcosine 8 Alanine Angiotensin II,Angiotensin II, 1-Sar-8-Ala,Angiotensin II, 1-Sarcosine-8-Alanine,Anhydrous Saralasin Acetate,Hydrated Saralasin Acetate

Related Publications

K Takeda, and H Meyer-Lehnert, and J K Kim, and R W Schrier
March 1980, The Journal of clinical investigation,
K Takeda, and H Meyer-Lehnert, and J K Kim, and R W Schrier
July 1982, Proceedings of the National Academy of Sciences of the United States of America,
K Takeda, and H Meyer-Lehnert, and J K Kim, and R W Schrier
August 1993, The Journal of laboratory and clinical medicine,
K Takeda, and H Meyer-Lehnert, and J K Kim, and R W Schrier
September 1995, Pflugers Archiv : European journal of physiology,
K Takeda, and H Meyer-Lehnert, and J K Kim, and R W Schrier
February 1993, Kidney international,
K Takeda, and H Meyer-Lehnert, and J K Kim, and R W Schrier
April 2014, Journal of cellular physiology,
K Takeda, and H Meyer-Lehnert, and J K Kim, and R W Schrier
June 2007, Biochemical and biophysical research communications,
K Takeda, and H Meyer-Lehnert, and J K Kim, and R W Schrier
September 1992, The American journal of physiology,
K Takeda, and H Meyer-Lehnert, and J K Kim, and R W Schrier
April 2008, American journal of physiology. Renal physiology,
K Takeda, and H Meyer-Lehnert, and J K Kim, and R W Schrier
April 2003, Journal of the American Society of Nephrology : JASN,
Copied contents to your clipboard!