Phosphorylation-dependent regulation of messenger RNA transcription, processing and translation within biomolecular condensates. 2021

Michael L Nosella, and Julie D Forman-Kay
Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.

Regulation of messenger RNA (mRNA) transcription, processing and translation occurs in the context of biomolecular condensates. How the physical properties of condensates connect with their biological regulatory functions is an ongoing area of interest, particularly for RNA metabolic pathways. Phosphorylation has emerged as an important mechanism for regulating protein phase separation propensities and localization patterns into different condensates, affecting compositions and dynamics. Key factors in transcription, mRNA processing and translation exhibit such phosphorylation-dependent changes in their roles within condensates, including their catalytic activities. Phosphorylation is increasingly understood to regulate the exchange of proteins through functionally linked condensates to fulfil their mRNA metabolic functions.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

Michael L Nosella, and Julie D Forman-Kay
January 1977, Brookhaven symposia in biology,
Michael L Nosella, and Julie D Forman-Kay
January 1969, Cold Spring Harbor symposia on quantitative biology,
Michael L Nosella, and Julie D Forman-Kay
October 2023, Journal of cell science,
Michael L Nosella, and Julie D Forman-Kay
January 2007, Methods in enzymology,
Michael L Nosella, and Julie D Forman-Kay
June 2000, Trends in biochemical sciences,
Michael L Nosella, and Julie D Forman-Kay
July 1975, Brookhaven symposia in biology,
Michael L Nosella, and Julie D Forman-Kay
April 2021, Current opinion in cell biology,
Michael L Nosella, and Julie D Forman-Kay
December 2020, Emerging topics in life sciences,
Michael L Nosella, and Julie D Forman-Kay
April 2011, Physical review. E, Statistical, nonlinear, and soft matter physics,
Michael L Nosella, and Julie D Forman-Kay
January 1975, Current topics in developmental biology,
Copied contents to your clipboard!