Effects of some mono- and bisquaternary ammonium compounds on the reactivatability of soman-inhibited human acetylcholinesterase in vitro. 1988

M Hallek, and L Szinicz
Institut für Pharmakologie und Toxikologie, Akademie des Sanitäts- und Gesundheitswesens der Bundeswehr, Garching-Hochbrück, Federal Republic of Germany.

Acetylcholinesterase (AChE) inhibited by the organophosphate soman (1,2,2-trimethyl-propylmethylphosphonofluoridate) rapidly becomes resistant to reactivation by oximes due to dealkylation of the soman-enzyme complex. This reaction is called aging. The effect of the four mono- and bisquaternary ammonium compounds tetramethylammonium (TMA), hexamethonium, decamethonium and suxamethonium on the reactivatability of soman-inhibited, solubilized AChE from human erythrocytes was investigated in vitro. All compounds were reversible inhibitors of AChE; the respective dissociation constants and the type of inhibition exhibited considerable differences. The affinities to both the active and the allosteric site were considerably higher for suxamethonium (Kii 81.3 microM; Ki 15.9 microM) and decamethonium (Kii 15.4 microM; Ki 4.4 microM) than for TMA (Kii 1 mM; Ki 289.6 microM) and hexamethonium (Kii 4.5 mM; Ki 331.8 microM). The reactivation experiments were performed in a four-step procedure (soman-inhibition at 0 degree and pH 10, aging at 37 degrees and pH 7.3, reactivation by the oxime HI 6 at 37 degrees and pH 7.3 followed by AChE assay). After these four steps (total duration 55 min), AChE was inhibited by soman to 95-100%. HI 6 could reactivate about 20% of the inhibited enzyme. All effectors increased the AChE reactivatability by HI 6 when added before aging was started. The maximal increase in reactivatability was higher in the presence of 1.6 mM suxamethonium (+35.8%) and 150 microM decamethonium (+40%) than of 22 mM TMA (+22.5%) and 8.3 mM hexamethonium (+19.2%). If the effectors were added after 5 min of aging they increased the activity of soman-inhibited AChE, but to a considerably smaller extent than HI 6. A good correlation of the respective Kii values and the effective concentrations of these drugs was observed, indicating that an allosteric binding site of AChE might be involved in the protective effect of these drugs.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D004905 Erythrocyte Aging The senescence of RED BLOOD CELLS. Lacking the organelles that make protein synthesis possible, the mature erythrocyte is incapable of self-repair, reproduction, and carrying out certain functions performed by other cells. This limits the average life span of an erythrocyte to 120 days. Erythrocyte Survival,Aging, Erythrocyte,Survival, Erythrocyte
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000644 Quaternary Ammonium Compounds Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN Quaternary Ammonium Compound,Ammonium Compound, Quaternary,Ammonium Compounds, Quaternary,Compound, Quaternary Ammonium
D012999 Soman An organophosphorus compound that inhibits cholinesterase. It causes seizures and has been used as a chemical warfare agent. Pinacolyl Methylphosphonofluoridate,Methylphosphonofluoridate, Pinacolyl

Related Publications

M Hallek, and L Szinicz
January 1970, European journal of pharmacology,
M Hallek, and L Szinicz
October 2012, The journal of physical chemistry. B,
M Hallek, and L Szinicz
January 1977, Zhurnal evoliutsionnoi biokhimii i fiziologii,
M Hallek, and L Szinicz
April 1959, Die Pharmazie,
M Hallek, and L Szinicz
August 1978, Biochimica et biophysica acta,
Copied contents to your clipboard!