Application of DNA-Alkylating Pyrrole-Imidazole Polyamides for Cancer Treatment. 2021

Rina Maeda, and Toshikazu Bando, and Hiroshi Sugiyama
Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo-ku, Kyoto, 606-8306, Japan.

Pyrrole-imidazole (PI) polyamides, which target specific DNA sequences, have been studied as a class of DNA minor-groove-binding molecules. To investigate the potential of compounds for cancer treatment, PI polyamides were conjugated with DNA-alkylating agents, such as seco-CBI and chlorambucil. DNA-alkylating PI polyamides have attracted attention because of their sequence-specific alkylating activities, which contribute to reducing the severe side effects of current DNA-damaging drugs. Many of these types of conjugates have been developed as new candidates for anticancer drugs. Herein, we review recent progress into research on DNA-alkylating PI polyamides and their sequence-specific action on targets associated with cancer development.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D009757 Nylons Polymers where the main polymer chain comprises recurring amide groups. These compounds are generally formed from combinations of diamines, diacids, and amino acids and yield fibers, sheeting, or extruded forms used in textiles, gels, filters, sutures, contact lenses, and other biomaterials. Polyamides,Dermalon,Ethilon,Nylon,Polyamide,Supramid,Dermalons,Ethilons,Supramids
D011758 Pyrroles Azoles of one NITROGEN and two double bonds that have aromatic chemical properties. Pyrrole
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016283 Proto-Oncogene Proteins p21(ras) Cellular proteins encoded by the H-ras, K-ras and N-ras genes. The proteins have GTPase activity and are involved in signal transduction as monomeric GTP-binding proteins. Elevated levels of p21 c-ras have been associated with neoplasia. This enzyme was formerly listed as EC 3.6.1.47. Proto-Oncogene Proteins c-ras,c-Ha-ras p21,c-Ki-ras p21,p21(N-ras),p21(c-Ha-ras),p21(c-Ki-ras),p21(c-ras),p21(ras),ras Proto-Oncogene Protein p21,Proto-Oncogene Protein p21(c-Ha-ras),Proto-Oncogene Protein p21(c-Ki-ras),Proto-Oncogene Protein p21(c-N-ras),Proto-Oncogene Protein p21(ras),Proto-Oncogene Protein ras,c-ras Proteins,p21 c-H-ras,p21 c-Ha-ras,p21 c-K-ras,p21 c-Ki-ras,p21 c-ras,ras Proto-Oncogene Product p21,Proteins c-ras, Proto-Oncogene,Proto Oncogene Protein ras,Proto Oncogene Proteins c ras,c Ha ras p21,c Ki ras p21,c ras Proteins,c-H-ras, p21,c-Ha-ras, p21,c-K-ras, p21,c-Ki-ras, p21,c-ras, Proto-Oncogene Proteins,c-ras, p21,p21 c H ras,p21 c Ha ras,p21 c K ras,p21 c Ki ras,p21 c ras,p21, c-Ha-ras,p21, c-Ki-ras,ras Proto Oncogene Product p21,ras Proto Oncogene Protein p21,ras, Proto-Oncogene Protein
D016615 Telomere A terminal section of a chromosome which has a specialized structure and which is involved in chromosomal replication and stability. Its length is believed to be a few hundred base pairs. Telomeres
D018906 Antineoplastic Agents, Alkylating A class of drugs that differs from other alkylating agents used clinically in that they are monofunctional and thus unable to cross-link cellular macromolecules. Among their common properties are a requirement for metabolic activation to intermediates with antitumor efficacy and the presence in their chemical structures of N-methyl groups, that after metabolism, can covalently modify cellular DNA. The precise mechanisms by which each of these drugs acts to kill tumor cells are not completely understood. (From AMA, Drug Evaluations Annual, 1994, p2026) Alkylating Agents, Antineoplastic,Alkylating Antineoplastic Agents,Alkylating Antineoplastic Drugs,Alkylating Antineoplastics,Alkylating Drugs, Antineoplastic,Antineoplastic Alkylating Agents,Antineoplastic Drugs, Alkylating,Antineoplastics, Alkylating,Antineoplastic Alkylating Drugs,Drugs, Antineoplastic Alkylating

Related Publications

Rina Maeda, and Toshikazu Bando, and Hiroshi Sugiyama
January 2008, Nucleic acids symposium series (2004),
Rina Maeda, and Toshikazu Bando, and Hiroshi Sugiyama
January 2006, Nucleic acids symposium series (2004),
Rina Maeda, and Toshikazu Bando, and Hiroshi Sugiyama
December 2006, Accounts of chemical research,
Rina Maeda, and Toshikazu Bando, and Hiroshi Sugiyama
January 2003, Nucleic acids research. Supplement (2001),
Rina Maeda, and Toshikazu Bando, and Hiroshi Sugiyama
January 2004, Nucleic acids symposium series (2004),
Rina Maeda, and Toshikazu Bando, and Hiroshi Sugiyama
March 2010, Anti-cancer drugs,
Rina Maeda, and Toshikazu Bando, and Hiroshi Sugiyama
April 2004, Journal of the American Chemical Society,
Rina Maeda, and Toshikazu Bando, and Hiroshi Sugiyama
January 2020, Beilstein journal of organic chemistry,
Rina Maeda, and Toshikazu Bando, and Hiroshi Sugiyama
June 1998, Angewandte Chemie (International ed. in English),
Copied contents to your clipboard!