Analysis of the factors that influence the C=N stretching frequency of polyene Schiff bases. Implications for bacteriorhodopsin and rhodopsin. 1988

H S Gilson, and B H Honig, and A Croteau, and G Zarrilli, and K Nakanishi
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032.

In this study quantum mechanical calculations of force constants and normal mode analysis are used to elucidate the factors that influence the C=C and C=N stretching frequencies in polyenes and in protonated Schiff bases. The C=N stretching frequency is found to depend on both the C=N stretching force constant and the C=N-H bending force constant. Due to the contributions of these two modes, the C=N stretching frequency is particularly sensitive to the magnitude of the Schiff base counterion interactions and to the hydrogen bonding environment of the Schiff base nitrogen. Models for chromophore-protein interactions in the retinal binding site and for the photochemical transformations of bacteriorhodopsin and rhodopsin are evaluated in light of these results.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D001436 Bacteriorhodopsins Rhodopsins found in the PURPLE MEMBRANE of halophilic archaea such as HALOBACTERIUM HALOBIUM. Bacteriorhodopsins function as an energy transducers, converting light energy into electrochemical energy via PROTON PUMPS. Bacteriorhodopsin
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012168 Retinal Pigments Photosensitive protein complexes of varied light absorption properties which are expressed in the PHOTORECEPTOR CELLS. They are OPSINS conjugated with VITAMIN A-based chromophores. Chromophores capture photons of light, leading to the activation of opsins and a biochemical cascade that ultimately excites the photoreceptor cells. Retinal Photoreceptor Pigment,Retinal Pigment,Visual Pigment,Visual Pigments,Retinal Photoreceptor Pigments,Photoreceptor Pigment, Retinal,Photoreceptor Pigments, Retinal,Pigment, Retinal,Pigment, Retinal Photoreceptor,Pigment, Visual,Pigments, Retinal,Pigments, Retinal Photoreceptor,Pigments, Visual
D012172 Retinaldehyde A diterpene derived from the carotenoid VITAMIN A which functions as the active component of the visual cycle. It is the prosthetic group of RHODOPSIN (i.e., covalently bonded to ROD OPSIN as 11-cis-retinal). When stimulated by visible light, rhodopsin transforms this cis-isomer of retinal to the trans-isomer (11-trans-retinal). This transformation straightens-out the bend of the retinal molecule and causes a change in the shape of rhodopsin triggering the visual process. A series of energy-requiring enzyme-catalyzed reactions convert the 11-trans-retinal back to the cis-isomer. 11-trans-Retinal,3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-Nonatetraenal,Axerophthal,Retinal,Retinene,Retinyl Aldehydde,Vitamin A Aldehyde,all-trans-Retinal,11-cis-Retinal,11 cis Retinal,11 trans Retinal,Aldehydde, Retinyl,Aldehyde, Vitamin A,all trans Retinal
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple
D012545 Schiff Bases Condensation products of aromatic amines and aldehydes forming azomethines substituted on the N atom, containing the general formula R-N:CHR. (From Grant & Hackh's Chemical Dictionary, 5th ed) Schiff Base,Base, Schiff,Bases, Schiff
D013059 Spectrum Analysis, Raman Analysis of the intensity of Raman scattering of monochromatic light as a function of frequency of the scattered light. Raman Spectroscopy,Analysis, Raman Spectrum,Raman Optical Activity Spectroscopy,Raman Scattering,Raman Spectrum Analysis,Scattering, Raman,Spectroscopy, Raman

Related Publications

H S Gilson, and B H Honig, and A Croteau, and G Zarrilli, and K Nakanishi
October 2012, The Journal of biological chemistry,
H S Gilson, and B H Honig, and A Croteau, and G Zarrilli, and K Nakanishi
June 1987, Biochemistry,
H S Gilson, and B H Honig, and A Croteau, and G Zarrilli, and K Nakanishi
April 1988, Biochemistry,
H S Gilson, and B H Honig, and A Croteau, and G Zarrilli, and K Nakanishi
May 1967, Chemical & pharmaceutical bulletin,
H S Gilson, and B H Honig, and A Croteau, and G Zarrilli, and K Nakanishi
November 2011, Sports health,
H S Gilson, and B H Honig, and A Croteau, and G Zarrilli, and K Nakanishi
June 1987, Photochemistry and photobiology,
H S Gilson, and B H Honig, and A Croteau, and G Zarrilli, and K Nakanishi
December 2011, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,
H S Gilson, and B H Honig, and A Croteau, and G Zarrilli, and K Nakanishi
January 1986, Annals of the New York Academy of Sciences,
H S Gilson, and B H Honig, and A Croteau, and G Zarrilli, and K Nakanishi
January 1995, Biophysical chemistry,
Copied contents to your clipboard!