Carnosine-like immunoreactivity in the olfactory bulb of the rat: an electron microscopic study. 1988

M Sakai, and K Kani, and N Karasawa, and M Yoshida, and I Nagatsu
Department of Anatomy, School of Medicine, Fujita-Gakuen Health University, Aichi, Japan.

Carnosine-immunoreactive primary olfactory nerve terminals are demonstrated in the glomerular layer of the rat olfactory bulb by immunoelectron microscopy. Asymmetrical synapses between dendrites of mitral/tufted cells and that of periglomerular cells could be observed. In the accessory olfactory system, carnosine-like immunoreactivity is also detected in the vomeronasal neurons.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D009832 Olfactory Nerve The 1st cranial nerve. The olfactory nerve conveys the sense of smell. It is formed by the axons of OLFACTORY RECEPTOR NEURONS which project from the olfactory epithelium (in the nasal epithelium) to the OLFACTORY BULB. Cranial Nerve I,First Cranial Nerve,Nervus Olfactorius,Fila Olfactoria,Olfactory Fila,Cranial Nerve Is,Cranial Nerve, First,Cranial Nerves, First,First Cranial Nerves,Nerve I, Cranial,Nerve Is, Cranial,Nerve, First Cranial,Nerve, Olfactory,Nerves, Olfactory,Olfactory Nerves
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002336 Carnosine A naturally occurring dipeptide neuropeptide found in muscles. Carnosine Hydrochloride,Carnosine, (D-His)-Isomer,L-Carnosine,beta-Alanylhistidine,Hydrochloride, Carnosine,L Carnosine,beta Alanylhistidine
D004151 Dipeptides Peptides composed of two amino acid units. Dipeptide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Sakai, and K Kani, and N Karasawa, and M Yoshida, and I Nagatsu
March 2000, Journal of chemical neuroanatomy,
M Sakai, and K Kani, and N Karasawa, and M Yoshida, and I Nagatsu
September 1990, Brain research,
M Sakai, and K Kani, and N Karasawa, and M Yoshida, and I Nagatsu
March 1987, Experientia,
M Sakai, and K Kani, and N Karasawa, and M Yoshida, and I Nagatsu
January 1967, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
M Sakai, and K Kani, and N Karasawa, and M Yoshida, and I Nagatsu
March 1992, Neuroscience letters,
M Sakai, and K Kani, and N Karasawa, and M Yoshida, and I Nagatsu
November 1974, Brain research,
M Sakai, and K Kani, and N Karasawa, and M Yoshida, and I Nagatsu
January 1990, Acta oto-laryngologica,
M Sakai, and K Kani, and N Karasawa, and M Yoshida, and I Nagatsu
March 1986, Neuroscience letters,
M Sakai, and K Kani, and N Karasawa, and M Yoshida, and I Nagatsu
April 1982, Neuroscience,
M Sakai, and K Kani, and N Karasawa, and M Yoshida, and I Nagatsu
September 1985, The Journal of comparative neurology,
Copied contents to your clipboard!