Stimulation and inhibition of pituitary growth hormone release by angiotensin II in vitro. 1988

W Robberecht, and C Denef
Laboratory of Cell Pharmacology, University of Leuven School of Medicine, Campus Gasthuisberg, Belgium.

Rat pituitary cell aggregates cultured in serum-free chemically defined medium, single cells, and hemipituitaries were used in a perifusion system to study the influence of angiotensin II (AII) on GH release. In aggregates the peptide displayed both stimulatory and inhibitory effects on GH release, depending on the hormonal conditions of the culture medium and the age of the animal. When cultured in the absence of glucocorticoid, a modest but statistically significant stimulation was seen in aggregates from immature as well as adult animals. In aggregates from 5-day-old animals, dexamethasone (DEX) strongly enhanced the GH-releasing activity of AII in a dose-dependent way; in aggregates from 14- and 25-day-old rats, the same pattern was found, although the stimulatory action was weaker than the effect in 5-day-old rats. In aggregates from adult animals, the glucocorticoid established an inhibitory effect of AII on GH release, an effect seen with both low and high concentrations of DEX. These age- and DEX-dependent effects were not found for AII stimulation of PRL release. In the presence of DEX, AII also inhibited GRF-induced GH release in aggregates from adult animals, while it was synergistic with GRF in aggregates from developing animals. The effects of AII on GH release disappeared when aggregates were redispersed into single cells. However, in these single cell preparations AII strongly stimulated PRL release. In hemipituitaries from 1-, 5-, and 14-day-old animals, AII also stimulated GH release, but no effect was seen in hemipituitaries from 25-day-old and adult animals. These data indicate that AII has dual effects on GH release depending on the developmental stage of the animal and the hormonal environment. Furthermore, since no effect of AII was seen after redispersion of aggregates into single cells, both stimulatory and inhibitory effects seem to be based on an intercellular signaling system.

UI MeSH Term Description Entries
D008297 Male Males
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D005260 Female Females
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014660 Vasoactive Intestinal Peptide A highly basic, 28 amino acid neuropeptide released from intestinal mucosa. It has a wide range of biological actions affecting the cardiovascular, gastrointestinal, and respiratory systems and is neuroprotective. It binds special receptors (RECEPTORS, VASOACTIVE INTESTINAL PEPTIDE). VIP (Vasoactive Intestinal Peptide),Vasoactive Intestinal Polypeptide,Vasointestinal Peptide,Intestinal Peptide, Vasoactive,Intestinal Polypeptide, Vasoactive,Peptide, Vasoactive Intestinal,Peptide, Vasointestinal,Polypeptide, Vasoactive Intestinal
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

W Robberecht, and C Denef
October 1990, Metabolism: clinical and experimental,
W Robberecht, and C Denef
December 1981, The Journal of clinical endocrinology and metabolism,
W Robberecht, and C Denef
October 1964, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
W Robberecht, and C Denef
September 1971, The Journal of clinical endocrinology and metabolism,
W Robberecht, and C Denef
February 1974, Biochemical and biophysical research communications,
Copied contents to your clipboard!