Mössbauer studies on the metal-thiolate cluster formation in Fe(II)-metallothionein. 1988

X Ding, and E Bill, and M Good, and A X Trautwein, and M Vasák
Institut für Physik, Medizinische Universität Lübeck, Federal Republic of Germany.

The stepwise 57Fe(II)-thiolate cluster formation in rabbit liver metallothionein-2 (MT) has been followed at pH 8.5 using Mössbauer spectroscopy. The zero-field spectra recorded at 4.2 K exhibit at all stages of filling one virtually identical single quadrupole splitting delta EQ and isomer shift delta as found for reduced rubredoxin (Rdred) or the model compound [Fe(II)(SPh)4]2-, thus indicating an Fe(II)-tetrathiolate coordination. A similar conclusion was reached also in previous electronic absorption studies [M. Good and M. Vasák (1986) Biochemistry 25,8353--8356]. The Mössbauer spectra obtained in the presence of a magnetic field were analyzed on the basis of a spin-Hamiltonian formalism resulting in Mössbauer parameters similar to those for Rdred and the inorganic model compound [Fe(II)(SPh)4]2-. The identity of the Mössbauer parameters of partially and fully metal-occupied MT suggests that a comparable distortion of the metal binding sites must exist. Simulation of the spectra revealed that the Fe(II) ions in the partially metal-occupied 57Fe(II)4-MT form appear to be magnetically isolated, whereas in the fully metal-saturated 57Fe(II)7-MT form a ratio of 3:4 of paramagnetic to diamagnetic subspectra was obtained. The latter result suggests the existence of three isolated metal binding sites and a metal-thiolate cluster containing four metal ions. In the light of structure determinations of MT containing Zn(II) and/or Cd(II) [W. Braun et al. (1986) J. Mol. Biol. 187, 125-129, and W. F. Furrey et al. (1986) Science (Wash. DC) 231, 704-710], which revealed two metal-thiolate clusters containing three and four metal ions, respectively, and involving all 20 cysteine residues in metal binding, the appearance of Mössbauer parameters characteristic of three isolated Fe(II) sites in 57Fe(II)7-MT is peculiar and deserves further studies. It is concluded, moreover, that the four-metal cluster is diamagnetic with the four Fe(II) ions being antiferromagnetically coupled. The appearance of magnetic coupling above four Fe(II) equivalents bound to apoMT indicates that the cluster formation occurs in a two-step process.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008668 Metallothionein A low-molecular-weight (approx. 10 kD) protein occurring in the cytoplasm of kidney cortex and liver. It is rich in cysteinyl residues and contains no aromatic amino acids. Metallothionein shows high affinity for bivalent heavy metals. Isometallothionein,Metallothionein A,Metallothionein B,Metallothionein I,Metallothionein II,Metallothionein IIA
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D009942 Organometallic Compounds A class of compounds of the type R-M, where a C atom is joined directly to any other element except H, C, N, O, F, Cl, Br, I, or At. (Grant & Hackh's Chemical Dictionary, 5th ed) Metallo-Organic Compound,Metallo-Organic Compounds,Metalloorganic Compound,Organometallic Compound,Metalloorganic Compounds,Compound, Metallo-Organic,Compound, Metalloorganic,Compound, Organometallic,Compounds, Metallo-Organic,Compounds, Metalloorganic,Compounds, Organometallic,Metallo Organic Compound,Metallo Organic Compounds
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005296 Ferrous Compounds Inorganic or organic compounds that contain divalent iron. Compounds, Ferrous
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013057 Spectrum Analysis The measurement of the amplitude of the components of a complex waveform throughout the frequency range of the waveform. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Spectroscopy,Analysis, Spectrum,Spectrometry

Related Publications

X Ding, and E Bill, and M Good, and A X Trautwein, and M Vasák
September 1988, Biochemistry,
X Ding, and E Bill, and M Good, and A X Trautwein, and M Vasák
November 1981, Proceedings of the National Academy of Sciences of the United States of America,
X Ding, and E Bill, and M Good, and A X Trautwein, and M Vasák
November 1988, FEBS letters,
X Ding, and E Bill, and M Good, and A X Trautwein, and M Vasák
March 1984, Environmental health perspectives,
X Ding, and E Bill, and M Good, and A X Trautwein, and M Vasák
November 2009, Metallomics : integrated biometal science,
X Ding, and E Bill, and M Good, and A X Trautwein, and M Vasák
March 2017, International journal of biological macromolecules,
X Ding, and E Bill, and M Good, and A X Trautwein, and M Vasák
June 2013, Dalton transactions (Cambridge, England : 2003),
X Ding, and E Bill, and M Good, and A X Trautwein, and M Vasák
January 1979, Ciba Foundation symposium,
X Ding, and E Bill, and M Good, and A X Trautwein, and M Vasák
November 1996, European journal of biochemistry,
X Ding, and E Bill, and M Good, and A X Trautwein, and M Vasák
January 1992, The Journal of biological chemistry,
Copied contents to your clipboard!