Effects of phorbol ester on mitogen and orthovanadate stimulated responses of cultured human fibroblasts. 1988

G A Jamieson, and B G Etscheid, and L L Muldoon, and M L Villereal
Department of Pharmacological and Physiological Sciences, University of Chicago, Illinois 60637.

Mitogenic stimulation of quiescent human fibroblasts (HSWP) with serum or a mixture of growth factors (consisting of vasopressin, bradykinin, EGF, and insulin) stimulates the release of inositol phosphates, mobilization of intracellular Ca, activation of Na/H exchange and subsequent incorporation of [3H]-thymidine. We have determined previously that pretreatment with the tumor-promoting phorbol ester 12-0-tetradecanoyl-phorbol-13-acetate (TPA) inhibits mitogen-stimulated Na influx in HSWP cells. We report herein that TPA pretreatment also substantially inhibits the mitogen-stimulated release of inositol phosphates in HSWP cells. Half maximal inhibition of mitogen-stimulated inositol phosphate release occurs at 1-2 nM TPA. Treatment of cells with TPA alone has no effect on inositol phosphate release. The effect of TPA pretreatment on inositol phosphate release induced by individual growth factors has also been determined. Orthovanadate, reported by Cassel et al. (1984) to increase Na/H exchange in A431 cells, has been demonstrated to stimulate both Na influx and inositol phosphate release in HSWP cells. TPA pretreatment also inhibits both orthovanadate-stimulated inositol phosphate release and Na influx. In addition, orthovanadate was determined to increase intracellular Ca activity by mobilizing intracellular calcium stores, as determined with the fluorescent intracellular calcium probe fura-2. TPA pretreatment blocks orthovanadate stimulated mobilization of intracellular Ca stores. It appears clear that in HSWP cells pretreatment of cells with phorbol ester is capable of artificially desensitizing the early cellular responses to mitogenic stimuli (growth factors, orthovanadate) by blocking the signal transduction mechanism involved at a point prior to the release of inositol phosphates. We hypothesize that in HSWP cells the normal desensitization of both inositol phosphate release and Na/H exchange is mediated via activation of protein kinase C subsequent to the stimulus-mediated activation of phospholipase C and release of protein kinase C activator diacylglycerol. However it is interesting to note that TPA-mediated inhibition of these early responses in HSWP cells does not inhibit their ability to be stimulated to incorporate [3H]-thymidine.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D008934 Mitogens Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed) Mitogen,Phytomitogen,Phytomitogens
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013268 Stimulation, Chemical The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Stimulation,Chemical Stimulations,Stimulations, Chemical
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer

Related Publications

G A Jamieson, and B G Etscheid, and L L Muldoon, and M L Villereal
March 1986, Biochimica et biophysica acta,
G A Jamieson, and B G Etscheid, and L L Muldoon, and M L Villereal
January 1987, Journal of cellular physiology,
G A Jamieson, and B G Etscheid, and L L Muldoon, and M L Villereal
October 2001, Cellular signalling,
G A Jamieson, and B G Etscheid, and L L Muldoon, and M L Villereal
May 1984, Journal of immunology (Baltimore, Md. : 1950),
G A Jamieson, and B G Etscheid, and L L Muldoon, and M L Villereal
November 1992, Cellular signalling,
G A Jamieson, and B G Etscheid, and L L Muldoon, and M L Villereal
October 1996, Neuroscience letters,
G A Jamieson, and B G Etscheid, and L L Muldoon, and M L Villereal
March 1993, FEBS letters,
G A Jamieson, and B G Etscheid, and L L Muldoon, and M L Villereal
July 1988, Blood,
G A Jamieson, and B G Etscheid, and L L Muldoon, and M L Villereal
April 1997, The British journal of dermatology,
G A Jamieson, and B G Etscheid, and L L Muldoon, and M L Villereal
December 1988, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!