Transferrin and iron in cultured chick embryonic neurons: a comparison between human and chick transferrins. 1988

A G Hyndman, and G D Zeevalk
Department of Biological Sciences, Rutgers University, Piscataway, New Jersey 08855.

Transferrin was not required for the short-term survival of cultured chick retinal neurons. Both human and chick transferrin failed to enhance the in vitro survival of 8- or 11-day embryonic chick retinal neurons when cultured in a defined medium. Furthermore, maintenance of neurons in the presence of chick transferrin antibody did not alter in vitro survival. Retinal neurons, however, could bind and internalize human or chick transferrin when assayed for by fluorescence immunohistochemical techniques. Binding and internalization of chick transferrin appeared to be greater than human transferrin. Iron uptake was measured in cultures maintained in the absence of transferrin. After incubation with 59FeCl3, iron uptake was 3.5 +/- 1.1 fmoles/cell. The presence of chick transferrin antibody did not significantly alter the amount of iron uptake occurring in this assay. In a comparison of human and chick transferrin mediated iron uptake, chick transferrin was 50% more effective than human transferrin in transporting iron. This study demonstrates that cultured embryonic retinal neurons are not dependent on transferrin for survival or iron uptake, although they actively bind and internalize transferrin. Results also demonstrate that whereas cultured chick retinal neurons can bind and utilize human transferrin, they do so with less efficiency than chick transferrin.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014168 Transferrin An iron-binding beta1-globulin that is synthesized in the LIVER and secreted into the blood. It plays a central role in the transport of IRON throughout the circulation. A variety of transferrin isoforms exist in humans, including some that are considered markers for specific disease states. Siderophilin,Isotransferrin,Monoferric Transferrins,Serotransferrin,Transferrin B,Transferrin C,beta 2-Transferrin,beta-1 Metal-Binding Globulin,tau-Transferrin,Globulin, beta-1 Metal-Binding,Metal-Binding Globulin, beta-1,Transferrins, Monoferric,beta 1 Metal Binding Globulin,beta 2 Transferrin,tau Transferrin

Related Publications

A G Hyndman, and G D Zeevalk
September 1988, Neurochemical research,
A G Hyndman, and G D Zeevalk
May 1974, Arzneimittel-Forschung,
A G Hyndman, and G D Zeevalk
June 1987, European journal of cell biology,
A G Hyndman, and G D Zeevalk
December 1998, European journal of biochemistry,
A G Hyndman, and G D Zeevalk
June 1988, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
A G Hyndman, and G D Zeevalk
April 1973, The Journal of cell biology,
Copied contents to your clipboard!