Quinolinic acid metabolism in the rat brain. Immunohistochemical identification of 3-hydroxyanthranilic acid oxygenase and quinolinic acid phosphoribosyltransferase in the hippocampal region. 1988

C Köhler, and L G Eriksson, and P R Flood, and J A Hardie, and E Okuno, and R Schwarcz
Department of Neuropharmacology, Astra Alab AB, Södertälje, Sweden.

Quinolinic acid (QUIN) is a potent endogenous excitotoxin, which has been shown to be present in the brain (Wolfensberger et al., 1983). In order to study the cellular localization of QUIN metabolism in the hippocampus, specific antibodies raised against purified rat liver 3-hydroxyanthranilic acid oxygenase (3HAO) and quinolinic acid phosphoribosyltransferase (QPRT), the enzymes directly responsible for QUIN synthesis and catabolism, respectively, were used for immunohistochemical studies in the adult male rat. Cells containing 3HAO immunoreactivity (3HAO-i) were present in all subfields of the hippocampal region, including the area dentata, Ammon's horn, the subicular complex, and the entorhinal area. The highest density of 3HAO-i cells was found in the molecular layer of Ammon's horn and in the hilus of area dentata, while the granular cell layer of area dentata and stratum pyramidale of Ammon's horn contained the lowest number of 3HAO-stained cells. A majority of hippocampal 3HAO-i cells were also stained with monoclonal antibodies against glial fibrillary acidic protein (GFAP) or S-100 protein, suggesting that 3HAO-i is present primarily in astrocytes. At the ultrastructural level, 3HAO-i was found to be distributed uniformly throughout the cytoplasm, with intense immunostaining present in the internal and the external layers of the mitochondria. QPRT-i was detected in 3 morphologically distinct cell types present in all parts of the hippocampus. The total number of QPRT-i cells was lower than that of the 3HAO-i cells. QPRT-i cells were relatively numerous in the molecular and radial layers of Ammon's horn, while they occurred only sporadically in stratum pyramidale of Ammon's horn and in the granular cell layer of area dentata. Many QPRT-i cells stained with antibodies against GFAP and S-100, but the proportion of cells in which QPRT was colocalized with these glial marker proteins was lower than that for 3-HAO-i cells. At the ultrastructural level, 2 types of QPRT-i glial cells were detected. The smaller cell type had a diffuse cytoplasmic staining, while the larger cell type, which also contained glial filaments, showed diffuse cytoplasmic staining and intense staining of lysosomal structures. The observation that 3HAO and QPRT only partially coexist in hippocampal glial cells suggests that while synthesis and catabolism of QUIN may occur in the same glial cells, catabolism of QUIN can also take place in cells lacking the synthetic enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010430 Pentosyltransferases Enzymes of the transferase class that catalyze the transfer of a pentose group from one compound to another.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

C Köhler, and L G Eriksson, and P R Flood, and J A Hardie, and E Okuno, and R Schwarcz
July 1986, Journal of neurochemistry,
C Köhler, and L G Eriksson, and P R Flood, and J A Hardie, and E Okuno, and R Schwarcz
February 1985, Journal of neurochemistry,
C Köhler, and L G Eriksson, and P R Flood, and J A Hardie, and E Okuno, and R Schwarcz
December 1949, The Journal of biological chemistry,
C Köhler, and L G Eriksson, and P R Flood, and J A Hardie, and E Okuno, and R Schwarcz
July 1994, Brain research,
C Köhler, and L G Eriksson, and P R Flood, and J A Hardie, and E Okuno, and R Schwarcz
January 1955, Bollettino della Societa italiana di biologia sperimentale,
C Köhler, and L G Eriksson, and P R Flood, and J A Hardie, and E Okuno, and R Schwarcz
September 1950, The Journal of biological chemistry,
C Köhler, and L G Eriksson, and P R Flood, and J A Hardie, and E Okuno, and R Schwarcz
December 1949, The Journal of biological chemistry,
C Köhler, and L G Eriksson, and P R Flood, and J A Hardie, and E Okuno, and R Schwarcz
August 1958, Bollettino della Societa italiana di biologia sperimentale,
C Köhler, and L G Eriksson, and P R Flood, and J A Hardie, and E Okuno, and R Schwarcz
April 1959, The Journal of biological chemistry,
C Köhler, and L G Eriksson, and P R Flood, and J A Hardie, and E Okuno, and R Schwarcz
July 1985, Biochimica et biophysica acta,
Copied contents to your clipboard!