Cytotoxicity induced by fine particulate matter (PM2.5) via mitochondria-mediated apoptosis pathway in rat alveolar macrophages. 2021

Haiying Wei, and Wanjun Yuan, and Huan Yu, and Hong Geng
College of Environmental and Resource Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, Shanxi, China. weihaiying@sxu.edu.cn.

Although positive associations exist between ambient particulate matter (PM2.5; diameter ≤ 2.5 μm) and the morbidity and mortality rates for respiratory diseases, the biological mechanisms of the reported health effects are unclear. Considering that alveolar macrophages (AM) are the main cells responsible for phagocytic clearance of xenobiotic particles that reach the airspaces of the lungs, the purpose of this study was to investigate whether PM2.5 induced AM apoptosis, and investigate its possible mechanisms. Freshly isolated AM from Wistar rats were treated with extracted PM2.5 at concentrations of 33, 100, or 300 μg/mL for 4 h; thereafter, the cytotoxic effects were evaluated. The results demonstrated that PM2.5 induced cytotoxicity by decreasing cell viability and increasing lactate dehydrogenase (LDH) levels in AMs. The levels of reactive oxygen species (ROS) and intracellular calcium cations (Ca2+) markedly increased in higher PM2.5 concentration groups. Additionally, the apoptotic ratio increased, and the apoptosis-related proteins BCL2-associated X (Bax), caspase-3, and caspase-9 were upregulated, whereas B cell lymphoma-2 (Bcl-2) protein levels were downregulated following PM2.5 exposure. Cumulative findings showed that PM2.5 induced apoptosis in AMs through a mitochondrial-mediated pathway, which indicated that PM2.5 plays a significant role in lung injury diseases.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016676 Macrophages, Alveolar Round, granular, mononuclear phagocytes found in the alveoli of the lungs. They ingest small inhaled particles resulting in degradation and presentation of the antigen to immunocompetent cells. Alveolar Macrophages,Macrophages, Pulmonary,Pulmonary Macrophages,Macrophage, Pulmonary,Pulmonary Macrophage,Alveolar Macrophage,Macrophage, Alveolar
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D052638 Particulate Matter Particles of any solid substance, generally under 30 microns in size, often noted as PM30. There is special concern with PM1 which can get down to PULMONARY ALVEOLI and induce MACROPHAGE ACTIVATION and PHAGOCYTOSIS leading to FOREIGN BODY REACTION and LUNG DISEASES. Ultrafine Fiber,Ultrafine Fibers,Ultrafine Particle,Ultrafine Particles,Ultrafine Particulate Matter,Air Pollutants, Particulate,Airborne Particulate Matter,Ambient Particulate Matter,Fiber, Ultrafine,Particle, Ultrafine,Particles, Ultrafine,Particulate Air Pollutants,Particulate Matter, Airborne,Particulate Matter, Ambient,Particulate Matter, Ultrafine

Related Publications

Haiying Wei, and Wanjun Yuan, and Huan Yu, and Hong Geng
October 2018, Ecotoxicology and environmental safety,
Haiying Wei, and Wanjun Yuan, and Huan Yu, and Hong Geng
April 2023, Cellular immunology,
Haiying Wei, and Wanjun Yuan, and Huan Yu, and Hong Geng
December 2006, American journal of respiratory and critical care medicine,
Haiying Wei, and Wanjun Yuan, and Huan Yu, and Hong Geng
August 2022, Journal of agricultural and food chemistry,
Haiying Wei, and Wanjun Yuan, and Huan Yu, and Hong Geng
September 2007, FEBS letters,
Haiying Wei, and Wanjun Yuan, and Huan Yu, and Hong Geng
December 2023, Food & function,
Haiying Wei, and Wanjun Yuan, and Huan Yu, and Hong Geng
February 2019, Environmental pollution (Barking, Essex : 1987),
Haiying Wei, and Wanjun Yuan, and Huan Yu, and Hong Geng
March 2017, GeoHealth,
Haiying Wei, and Wanjun Yuan, and Huan Yu, and Hong Geng
October 2017, Environmental toxicology and pharmacology,
Copied contents to your clipboard!