A replica plating technique was utilized to isolate stable CHO cell mutants that are heat-sensitive and have altered capacities to develop thermotolerance. From a mutagen (EMS) treated population of CHO cells, two strains were isolated. One (HS-36) shows a greatly reduced ability to develop thermotolerance following an initial 45.0 degrees C heat shock. The other (HS-23) also shows a greatly reduced thermotolerance development following a short 45.0 degrees C induction dose, but a greater thermotolerance development following longer 45.0 degrees C induction doses. The dose-survival response following single-dose 45.0 degrees C heating of HS-23 cells suggests the presence of a resistant subpopulation which is not due to contamination from, or reversion to, wild-type cells. Both strains have unique morphological characteristics. Spheroids develop in the central portion of HS-36 colonies, though cells in monolayers are indistinguishable from wild-type parental cells. HS-23 cells grow in firmly attached monolayers, but more than 95% maintain a "rounded" morphology. The remainder show a "flattened" morphology typical of CHO cells. Both strains have parental CHO characteristics as determined by chromosome number, population doubling times, and survival responses to UV light and to gamma rays. Each has maintained its heat-sensitive and altered thermotolerance phenotype for a period of over 6 months in continuous log-phase culture.