George Lyman Duff memorial lecture. Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry. 1988

D M Small
Department of Medicine, Housman Medical Research Center, Boston University School of Medicine, Massachusetts.

This review summarizes the evidence that the physical properties of lipids which accumulate in the intima play major roles in the progression and regression of lesions of atherosclerosis. All of the three major classes of lipids that accumulate in lesions (phospholipids, cholesterol, and cholesterol esters) are water insoluble. Phospholipids and cholesterol esters are almost mutually insoluble, but cholesterol, a crystalline solid at 37 degrees C, has considerable solubility in phospholipid bilayers and cholesterol esters. In normal infant intima, cholesterol is solubilized by phospholipid membranes. During fatty streak development, groups of cells are stimulated to take up more cholesterol than they excrete. The excess cholesterol is biochemically converted to cholesterol ester, which separates as droplets to form foam cells. Some fatty streaks then undergo a transition to an intermediate lesion containing excess cholesterol which is carried in cholesterol-supersaturated membranes and droplets. When nucleation of this excess cholesterol occurs, it precipitates as crystals; their formation coincides with the onset of necrosis and plaque formation. The hallmark of plaque is the presence of inert cholesterol crystals. They appear to form from hydrolysis of the older deposits of cholesterol esters in the base of intermediate lesions. Thus, the lipids in plaques are stratified, with recently deposited cholesterol esters present in the luminal part of the intima and older deposits in the deeper regions. When plasma cholesterol is lowered below about 150 mg/dl, lipids are mobilized from lesions and regression gradually occurs. Early in the regression process, cholesterol esters are reduced at least partly by hydrolysis to yield cholesterol, some of which may crystallize and inhibit rapid regression. After prolonged periods of low plasma cholesterol, cholesterol esters and foam cells disappear and crystalline cholesterol gradually dissolves, leading to true regression.

UI MeSH Term Description Entries
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D002788 Cholesterol Esters Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis. Cholesterol Ester,Cholesteryl Ester,Cholesteryl Esters,Ester, Cholesterol,Ester, Cholesteryl,Esters, Cholesterol,Esters, Cholesteryl
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D001161 Arteriosclerosis Thickening and loss of elasticity of the walls of ARTERIES of all sizes. There are many forms classified by the types of lesions and arteries involved, such as ATHEROSCLEROSIS with fatty lesions in the ARTERIAL INTIMA of medium and large muscular arteries. Arterioscleroses
D050356 Lipid Metabolism Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS. Metabolism, Lipid

Related Publications

D M Small
June 1958, Canadian Medical Association journal,
D M Small
June 1992, Arteriosclerosis and thrombosis : a journal of vascular biology,
D M Small
May 2000, Arteriosclerosis, thrombosis, and vascular biology,
D M Small
February 1994, Arteriosclerosis and thrombosis : a journal of vascular biology,
D M Small
January 1985, Arteriosclerosis (Dallas, Tex.),
Copied contents to your clipboard!