Atherogenesis in two strains of obese rats. The fatty Zucker and LA/N-corpulent. 1988

R M Amy, and P J Dolphin, and R A Pederson, and J C Russell
Department of Pathology, University of Alberta, Edmonton, Canada.

Two strains of obese rats, the fatty Zucker and the LA/N-corpulent have been compared at 6 months age for the presence of vascular and myocardial disease. Both strains, when obese, exhibit a VLDL hyperlipidemia with elevated triglycerides and moderate elevations of plasma cholesterol concentrations compared to the lean rats of the same strain. The hyperlipidemia is more modest in the fatty Zucker than the corpulent LA/N, and the serum lipid concentrations of the lean Zucker are lower than those of the lean LA/N. Apolipoprotein concentrations were similar and elevated in the two obese genotypes compared to the lean genotypes which were also similar to each other. Male and female obese animals of both strains exhibited hyperinsulinemia under fasting conditions and after oral glucose, with obese male LA/N rats exhibiting the most severe hyperinsulinemia. Glucose tolerance was impaired in obese LA/N animals but was normal in lean rats of both strains and fatty Zucker rats of both sexes. The glucose intolerance observed in obese LA/N animals was more severe in the male than in the female rats. Unlike the corpulent rat, which develops atherosclerotic lesions, the fatty Zucker shows no evidence of advanced vascular lesions on scanning electron microscopy. The fatty Zucker also does not develop the myocardial lesions that are frequent in the male corpulent LA/N rat. It is suggested that the initiation of the atherogenic process is dependent upon elevated insulin levels or transient hyperglycemia. Development of the advanced lesions appears to require the presence of hyperlipidemia.

UI MeSH Term Description Entries
D006949 Hyperlipidemias Conditions with excess LIPIDS in the blood. Hyperlipemia,Hyperlipidemia,Lipemia,Lipidemia,Hyperlipemias,Lipemias,Lipidemias
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D011922 Rats, Mutant Strains Rats bearing mutant genes which are phenotypically expressed in the animals. Mutant Strains Rat,Mutant Strains Rats,Rat, Mutant Strains,Strains Rat, Mutant,Strains Rats, Mutant
D011924 Rats, Zucker Two populations of Zucker rats have been cited in research--the "fatty" or obese and the lean. The "fatty" rat (Rattus norvegicus) appeared as a spontaneous mutant. The obese condition appears to be due to a single recessive gene. Zucker Rat,Zucker Rats,Rat, Zucker
D005951 Glucose Tolerance Test A test to determine the ability of an individual to maintain HOMEOSTASIS of BLOOD GLUCOSE. It includes measuring blood glucose levels in a fasting state, and at prescribed intervals before and after oral glucose intake (75 or 100 g) or intravenous infusion (0.5 g/kg). Intravenous Glucose Tolerance,Intravenous Glucose Tolerance Test,OGTT,Oral Glucose Tolerance,Oral Glucose Tolerance Test,Glucose Tolerance Tests,Glucose Tolerance, Oral
D006946 Hyperinsulinism A syndrome with excessively high INSULIN levels in the BLOOD. It may cause HYPOGLYCEMIA. Etiology of hyperinsulinism varies, including hypersecretion of a beta cell tumor (INSULINOMA); autoantibodies against insulin (INSULIN ANTIBODIES); defective insulin receptor (INSULIN RESISTANCE); or overuse of exogenous insulin or HYPOGLYCEMIC AGENTS. Compensatory Hyperinsulinemia,Endogenous Hyperinsulinism,Exogenous Hyperinsulinism,Hyperinsulinemia,Hyperinsulinemia, Compensatory,Hyperinsulinism, Endogenous,Hyperinsulinism, Exogenous
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001013 Aorta, Thoracic The portion of the descending aorta proceeding from the arch of the aorta and extending to the DIAPHRAGM, eventually connecting to the ABDOMINAL AORTA. Aorta, Ascending,Aorta, Descending,Aortic Arch,Aortic Root,Arch of the Aorta,Descending Aorta,Sinotubular Junction,Ascending Aorta,Thoracic Aorta,Aortic Roots,Arch, Aortic,Ascending Aortas,Junction, Sinotubular,Root, Aortic,Sinotubular Junctions

Related Publications

R M Amy, and P J Dolphin, and R A Pederson, and J C Russell
July 1991, International journal of obesity,
R M Amy, and P J Dolphin, and R A Pederson, and J C Russell
June 1985, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
R M Amy, and P J Dolphin, and R A Pederson, and J C Russell
April 2012, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
R M Amy, and P J Dolphin, and R A Pederson, and J C Russell
June 2005, Kidney international,
R M Amy, and P J Dolphin, and R A Pederson, and J C Russell
September 1993, Comparative biochemistry and physiology. B, Comparative biochemistry,
R M Amy, and P J Dolphin, and R A Pederson, and J C Russell
July 2007, American journal of physiology. Heart and circulatory physiology,
R M Amy, and P J Dolphin, and R A Pederson, and J C Russell
October 1986, Canadian journal of physiology and pharmacology,
R M Amy, and P J Dolphin, and R A Pederson, and J C Russell
February 2020, Nutrients,
R M Amy, and P J Dolphin, and R A Pederson, and J C Russell
January 1986, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
R M Amy, and P J Dolphin, and R A Pederson, and J C Russell
October 2006, American journal of physiology. Heart and circulatory physiology,
Copied contents to your clipboard!