Identification of the protein 4.1 binding site to phosphatidylserine vesicles. 1988

A M Cohen, and S C Liu, and J Lawler, and L Derick, and J Palek
Department of Biomedical, St. Elizabeth's Hospital, Tufts University School of Medicine, Boston, Massachusetts 02135.

Previous studies have shown that protein 4.1 is a multifunctional protein that binds to spectrin, actin, glycophorins, the anion channel protein, and phosphatidylserine (PS). In this report, we have characterized the binding of protein 4.1 and its major proteolytic fragments to phospholipid vesicles. Pure 125I-labeled protein 4.1 was incubated with PS liposomes, and the free protein 4.1 was separated by ultracentrifugation. Protein 4.1 bound to PS liposomes with a high affinity. At saturation, there was 9 X 10(-3) pmol of protein 4.1 bound/pmol of PS with a Kd of 3.3 X 10(-7) M. When the protein 4.1 containing liposomes were examined in an electron microscope, the protein 4.1 was found uniformly decorating the vesicles in a rosettelike fashion. Among peripheral membrane proteins tested (spectrin, actin, ankyrin, and protein 4.1), protein 4.1 showed the highest level of binding to PS. The binding of protein 4.1 to PS, one of the principal phospholipids of the inner half of the lipid bilayer, was considerably higher than the binding to phosphatidylcholine, that is principally located in the outer half of the lipid bilayer. To identify the structural domain of protein 4.1 involved in binding to the phospholipids, a mixture of proteolytic fragments of protein 4.1 was incubated with PS liposomes. The liposomes selectively retained the 30-kilodalton (kDa) basic domain of the protein, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/isoelectric focusing.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts

Related Publications

A M Cohen, and S C Liu, and J Lawler, and L Derick, and J Palek
February 1993, Biochemical and biophysical research communications,
A M Cohen, and S C Liu, and J Lawler, and L Derick, and J Palek
January 1988, The Journal of clinical investigation,
A M Cohen, and S C Liu, and J Lawler, and L Derick, and J Palek
October 1991, Biochemistry,
A M Cohen, and S C Liu, and J Lawler, and L Derick, and J Palek
October 1986, The Journal of biological chemistry,
A M Cohen, and S C Liu, and J Lawler, and L Derick, and J Palek
March 1987, Biochimica et biophysica acta,
A M Cohen, and S C Liu, and J Lawler, and L Derick, and J Palek
January 1983, European journal of biochemistry,
A M Cohen, and S C Liu, and J Lawler, and L Derick, and J Palek
March 1986, The Journal of biological chemistry,
A M Cohen, and S C Liu, and J Lawler, and L Derick, and J Palek
April 1994, The Biochemical journal,
A M Cohen, and S C Liu, and J Lawler, and L Derick, and J Palek
August 1992, The EMBO journal,
A M Cohen, and S C Liu, and J Lawler, and L Derick, and J Palek
May 1992, The Journal of biological chemistry,
Copied contents to your clipboard!