Interactions of oleic acid with liver fatty acid binding protein: a carbon-13 NMR study. 1988

D P Cistola, and M T Walsh, and R P Corey, and J A Hamilton, and P Brecher
Housman Medical Research Center, Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118.

13C NMR spectroscopy was used to probe the structural interactions between carboxyl-13C-enriched oleic acid (18:1) and rat liver fatty acid binding protein (FABP) and the partitioning of 18:1 between FABP and unilamellar phosphatidylcholine (PC) vesicles. Spectra of systems containing 2-8 mol of 18:1/mol of FABP (but no PC) exhibited one carboxyl resonance (182.2 ppm) corresponding to FABP-bound 18:1. At pH values less than 8.0, an additional carboxyl resonance, corresponding to unbound 18:1 in a lamellar phase, was observed. Both resonances exhibited ionization shifts with estimated apparent pKa values of less than 5 (bound 18:1) and greater than 7 (unbound 18:1). The intensity of the resonance corresponding to FABP-bound 18:1 increased with increasing 18:1/FABP mole ratio and at 8/1 mole ratio indicated that at least 2 and 6 mol of 18:1/mol of FABP were FABP-bound at pH 7.4 and 8.6, respectively. NMR spectra of systems containing equal concentrations (w/v) of FABP and PC and from 1 to 4 mol of total fatty acid (FA)/mol of FABP exhibited two 18:1 carboxyl resonances (182.2 and 178.5 ppm, pH 7.4). The downfield resonance corresponded to FABP-bound 18:1 and the upfield resonance to PC vesicle bound 18:1. At 1/1 mole ratio (FA/FABP), the intensities of both resonances were approximately equal, but at 4/1 mole ratio the resonance for PC vesicle bound 18:1 was 3-fold more intense than that for FABP-bound 18:1. The following conclusions are reached: (i) The carboxyl groups of 18:1 bound to liver FABP experience only one type of binding environment (the aqueous milieu adjacent to the protein surface).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009829 Oleic Acids A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D000071438 Fatty Acid-Binding Protein 7 A fatty acid-binding protein expressed by ASTROCYTES during CENTRAL NERVOUS SYSTEM development, and by MALIGNANT GLIOMA cells. It is also expressed by ASTROCYTES in response to injury or ISCHEMIA, and may function in repair of the MYELIN SHEATH. Brain Lipid-Binding Protein,Fatty Acid-Binding Protein, Brain,Mammary-Derived Growth Inhibitor Related Protein,Brain Lipid Binding Protein,Fatty Acid Binding Protein 7,Fatty Acid Binding Protein, Brain,Lipid-Binding Protein, Brain,Mammary Derived Growth Inhibitor Related Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D P Cistola, and M T Walsh, and R P Corey, and J A Hamilton, and P Brecher
July 2002, Toxicology,
D P Cistola, and M T Walsh, and R P Corey, and J A Hamilton, and P Brecher
October 2001, Biochemistry,
D P Cistola, and M T Walsh, and R P Corey, and J A Hamilton, and P Brecher
January 1988, European journal of biochemistry,
D P Cistola, and M T Walsh, and R P Corey, and J A Hamilton, and P Brecher
December 1996, The Journal of biological chemistry,
D P Cistola, and M T Walsh, and R P Corey, and J A Hamilton, and P Brecher
August 1987, The Journal of biological chemistry,
D P Cistola, and M T Walsh, and R P Corey, and J A Hamilton, and P Brecher
April 2003, Biochimica et biophysica acta,
D P Cistola, and M T Walsh, and R P Corey, and J A Hamilton, and P Brecher
December 1991, The Biochemical journal,
D P Cistola, and M T Walsh, and R P Corey, and J A Hamilton, and P Brecher
October 1984, Archives internationales de physiologie et de biochimie,
D P Cistola, and M T Walsh, and R P Corey, and J A Hamilton, and P Brecher
June 1996, Biochemistry,
D P Cistola, and M T Walsh, and R P Corey, and J A Hamilton, and P Brecher
September 2004, Biochimica et biophysica acta,
Copied contents to your clipboard!